腹部器官分割是计算机辅助诊断系统的重要研究方向。医学图像中多个器官的分割称为多器官分割。它是医学图像分析领域的一个广泛研究课题。本研究的目的是为腹部 CT 扫描中多器官分割提供全面的系统文献综述。本文重点关注最先进的方法从传统技术到深度学习模型的进展。首先,这些方法分为三类:基于图集的、统计形状模型和深度学习模型。其次,进行研究以确定哪些器官需要更多关注。肝脏、肾脏和脾脏是最常选择的器官,而食道、十二指肠、和门静脉很少采摘。当考虑医学图像进行研究时,数据集起着至关重要的作用。本文阐明了公开可用的数据集及其大小、器官类别的数量以及相关挑战,这些挑战使当前的研究对同一领域的研究人员更加有效和有用。此外,还介绍了评估指标及其范围和特征。最后,我们讨论了将为研究人员开辟道路的挑战和未来方向。根据调查的研究论文,Dense-Net 成为最佳选择。最近,多器官分割的标准做法是顺序方式的两步深度学习模型,它可以利用两个模型。本文阐明了公开可用的数据集及其大小、器官类别的数量以及相关挑战,这些挑战使当前的研究对同一领域的研究人员更加有效和有用。此外,还介绍了评估指标及其范围和特征。最后,我们讨论了将为研究人员开辟道路的挑战和未来方向。根据调查的研究论文,Dense-Net 成为最佳选择。最近,多器官分割的标准做法是顺序方式的两步深度学习模型,它可以利用两个模型。本文阐明了公开可用的数据集及其大小、器官类别的数量以及相关挑战,这些挑战使当前的研究对同一领域的研究人员更加有效和有用。此外,还介绍了评估指标及其范围和特征。最后,我们讨论了将为研究人员开辟道路的挑战和未来方向。根据调查的研究论文,Dense-Net 成为最佳选择。最近,多器官分割的标准做法是顺序方式的两步深度学习模型,它可以利用两个模型。此外,还介绍了评估指标及其范围和特征。最后,我们讨论了将为研究人员开辟道路的挑战和未来方向。根据调查的研究论文,Dense-Net 成为最佳选择。最近,多器官分割的标准做法是顺序方式的两步深度学习模型,它可以利用两个模型。此外,还介绍了评估指标及其范围和特征。最后,我们讨论了将为研究人员开辟道路的挑战和未来方向。根据调查的研究论文,Dense-Net 成为最佳选择。最近,多器官分割的标准做法是顺序方式的两步深度学习模型,它可以利用两个模型。
"点击查看英文标题和摘要"
Evolution of Multiorgan Segmentation Techniques from Traditional to Deep Learning in Abdominal CT Images – A Systematic Review
Abdominal organ segmentation is the crucial research direction in computer assisted diagnostic systems. Segmentation of multiple organs in medical images is known as Multiorgan segmentation. It is a widespread subject of research in the realm of medical image analysis. The purpose of this study is to provide the comprehensive systematic literature review on segmentation of multiple organs in abdomen CT scans. This paper focuses on the progression of state-of-art methods from traditional techniques to deep learning models. Firstly, the methods are classified into three categories: atlas based, statistical shape models and deep learning models. Secondly, research is carried out to determine which organs require more attention. The liver, kidney, and spleen are the most often selected organs, whereas the esophagus, duodenum, and portal vein are rarely picked. When medical images are taken into account for research, datasets play a vital role. This paper sheds light on publicly available datasets along with their size, no of organ classes and, related challenges which make the current study more effective and useful for the researchers in the same field. Further, evaluation metrics along with their scope and characteristics are presented. We conclude with a discussion of challenges and future directions which will open pathways for researchers. Based on the surveyed research papers, Dense-Net came out as an optimal choice. Recently, the standard practice in multi organ segmentation is two step deep learning models in sequential manner, which can take leverage of two models.