住宅小区热网的优化控制需要准确的每栋建筑的短期热负荷预测值。然而,目前住宅热负荷预测的研究主要依赖与热负荷相关的历史数据,没有考虑建筑本体参数对不同建筑类型的影响,导致预测准确率不高。本研究的目的是获得住宅区不同建筑物的准确短期热负荷预测值。在此基础上,引入建筑本体参数,采用Lasso方法对热负荷影响因素进行综合分析和选择。提出了一种使用自适应T分布Satin Bowerbird(tSBO)算法优化卷积神经网络(CNN)的混合短期热负荷预测模型。收集了10个住宅小区已建成供暖系统的实际运行数据,对模型的性能进行了测试。结果表明,构建本体参数对未来热负荷的预测精度有显着影响。引入建筑本体参数后,混合模型预测值的平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别降低了约29.61%和22.00%。与其他预测模型相比,所提出的混合模型在 MAPE 和 RMSE 上平均降低了 18.08% 和 16.26%。收集了10个住宅小区已建成供暖系统的实际运行数据,对模型的性能进行了测试。结果表明,构建本体参数对未来热负荷的预测精度有显着影响。引入建筑本体参数后,混合模型预测值的平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别降低了约29.61%和22.00%。与其他预测模型相比,所提出的混合模型在 MAPE 和 RMSE 上平均降低了 18.08% 和 16.26%。收集了10个住宅小区已建成供暖系统的实际运行数据,对模型的性能进行了测试。结果表明,构建本体参数对未来热负荷的预测精度有显着影响。引入建筑本体参数后,混合模型预测值的平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别降低了约29.61%和22.00%。与其他预测模型相比,所提出的混合模型在 MAPE 和 RMSE 上平均降低了 18.08% 和 16.26%。引入建筑本体参数后,混合模型预测值的平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别降低了约29.61%和22.00%。与其他预测模型相比,所提出的混合模型在 MAPE 和 RMSE 上平均降低了 18.08% 和 16.26%。引入建筑本体参数后,混合模型预测值的平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别降低了约29.61%和22.00%。与其他预测模型相比,所提出的混合模型在 MAPE 和 RMSE 上平均降低了 18.08% 和 16.26%。
"点击查看英文标题和摘要"
Heating load prediction of residential district using hybrid model based on CNN
Optimal control of heat network in residential district requires accurate short-term heat load prediction value of each building. However, the current research on residential heat load prediction mainly relies on historical data related to heat load and does not consider the influence of building ontology parameters on different building types, resulting in low prediction accuracy. The objective of this study is to obtain accurate short-term heat load prediction values of different buildings in residential district. Based on this, the building ontology parameters were introduced, and the Lasso method was adopted to comprehensively analyze and select the influencing factors of heat load. A hybrid short-term heat load prediction model using adaptive T-distributed Satin Bowerbird (tSBO) algorithm to optimize convolutional neural network (CNN) was proposed. The actual operation data of established heating system in 10 residential districts were collected to test the performance of the model. The results show that building ontology parameters have a significant impact on the prediction accuracy of future heat load. After introducing the building ontology parameters, the mean absolute percentage error (MAPE) and root mean square error (RMSE) of the predicted values of the hybrid model were reduced by about 29.61% and 22.00%, respectively. Compared with other prediction models, the proposed hybrid model achieves an average reduction of 18.08% and 16.26% in MAPE and RMSE.