Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Live microalgal cells modified by L-cys/Au@carbon dots/bilirubin oxidase layers for enhanced oxygen reduction in a membrane-less biofuel cell
SmartMat ( IF 15.3 ) Pub Date : 2022-03-28 , DOI: 10.1002/smm2.1100 Sili Qing 1 , Lin‐Lin Wang 1 , Li‐Ping Jiang 1 , Xiaoge Wu 2 , Jun‐Jie Zhu 1
SmartMat ( IF 15.3 ) Pub Date : 2022-03-28 , DOI: 10.1002/smm2.1100 Sili Qing 1 , Lin‐Lin Wang 1 , Li‐Ping Jiang 1 , Xiaoge Wu 2 , Jun‐Jie Zhu 1
Affiliation
Electrochemical oxygen reduced reaction (ORR) is a critical element in clean energy development. Despite efforts to enhance gas transfer to the reaction interface, the low solubility of O2 molecules and slow diffusion rate in liquid electrolyte is still a significant challenge. Herein, we design an artificial outer membrane on microalgal cells, which consists of a carbon dots/bilirubin oxidase (CDs/BOD) ORR catalyst layer and a L-cystine/Au nanoporous O2 supply layer. O2 generated by photosynthesis from microalgal cells then can be directly transported to the CDs/BOD catalytic interfaces, overcoming the sluggish gas transfer in the electrolyte. Thus, the cathode constructed by the fabricated microalgal cells realizes an ORR current density of 655.2 μA/cm2 with fast ORR kinetics, which is 2.68 times higher than that of a BOD cathode fed with pure O2. A membrane-less glucose/O2 biofuel cell is further developed using the hybrid artificial cells as the cathode, and the power density is 2.39 times higher than that of a BOD cathode biofuel cell in O2 saturated solution. This biomimetic design supplies O2 directly to the carbon dots/BOD catalyst layer from the microalgae membrane through a nanoporous L-cys/Au layer, providing an alternative solution for the transfer barrier of O2 in the electrolyte.
中文翻译:
L-cys/Au@carbon 点/胆红素氧化酶层修饰的活微藻细胞用于增强无膜生物燃料电池中的氧还原
电化学氧还原反应(ORR)是清洁能源发展的关键要素。尽管努力增强气体向反应界面的转移,O 2分子的低溶解度和液体电解质中的慢扩散速率仍然是一个重大挑战。在此,我们在微藻细胞上设计了一种人工外膜,该外膜由碳点/胆红素氧化酶 (CDs/BOD) ORR 催化剂层和 L-胱氨酸/Au 纳米多孔 O 2供应层组成。微藻细胞通过光合作用产生的O 2然后可以直接运输到CDs/BOD催化界面,克服了电解质中缓慢的气体转移。因此,由制造的微藻电池构成的阴极实现了 655.2 μA/cm 的 ORR 电流密度2具有快速的 ORR 动力学,比用纯 O 2供给的 BOD 正极高 2.68 倍。以混合人工电池为阴极,进一步开发了无膜葡萄糖/O 2生物燃料电池,在O 2饱和溶液中功率密度是BOD阴极生物燃料电池的2.39倍。这种仿生设计通过纳米多孔 L-cys/Au 层从微藻膜直接向碳点/BOD 催化剂层提供 O 2 ,为电解质中 O 2 的转移屏障提供了替代解决方案。
更新日期:2022-03-28
中文翻译:
L-cys/Au@carbon 点/胆红素氧化酶层修饰的活微藻细胞用于增强无膜生物燃料电池中的氧还原
电化学氧还原反应(ORR)是清洁能源发展的关键要素。尽管努力增强气体向反应界面的转移,O 2分子的低溶解度和液体电解质中的慢扩散速率仍然是一个重大挑战。在此,我们在微藻细胞上设计了一种人工外膜,该外膜由碳点/胆红素氧化酶 (CDs/BOD) ORR 催化剂层和 L-胱氨酸/Au 纳米多孔 O 2供应层组成。微藻细胞通过光合作用产生的O 2然后可以直接运输到CDs/BOD催化界面,克服了电解质中缓慢的气体转移。因此,由制造的微藻电池构成的阴极实现了 655.2 μA/cm 的 ORR 电流密度2具有快速的 ORR 动力学,比用纯 O 2供给的 BOD 正极高 2.68 倍。以混合人工电池为阴极,进一步开发了无膜葡萄糖/O 2生物燃料电池,在O 2饱和溶液中功率密度是BOD阴极生物燃料电池的2.39倍。这种仿生设计通过纳米多孔 L-cys/Au 层从微藻膜直接向碳点/BOD 催化剂层提供 O 2 ,为电解质中 O 2 的转移屏障提供了替代解决方案。