Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multidefect N-Nb2O5-x@CNTs Incorporated into Capillary Transport Framework for Li+/Na+ Storage
Small ( IF 13.0 ) Pub Date : 2022-04-20 , DOI: 10.1002/smll.202201450 Yue Lian 1 , Yujing Zheng 1 , Zhifeng Wang 2 , Yongfeng Hu 3 , Jing Zhao 1 , Huaihao Zhang 1
Small ( IF 13.0 ) Pub Date : 2022-04-20 , DOI: 10.1002/smll.202201450 Yue Lian 1 , Yujing Zheng 1 , Zhifeng Wang 2 , Yongfeng Hu 3 , Jing Zhao 1 , Huaihao Zhang 1
Affiliation
As an ion-embedded material with small strain and low transport energy barrier, the limited ion transport rate and conductivity of niobium pentaoxide (Nb2O5) are the main factors limiting its application in lithium/sodium storage systems. In this work, the microsphere composites (N-Nb2O5-x@CNTs) are prepared by combining Nb2O5, rich in nitrogen doping and vacancy defects, with carbon nanotubes (CNTs) penetrating the bulk phase. With the capillary effect, CNTs can enable the rapid electrolyte infiltration into the microspheres, thus shorting the Li+/Na+ transport path. In addition, CNTs also hinder the direct contact between the electrolyte and Nb2O5, and inhibit the irreversible reaction. Meanwhile, nitrogen doping and oxygen vacancy defects reduce the energy barrier of Li+/Na+ transport, and improve their transport rate, proved by density functional theory. Highly conductive CNTs and unpaired electrons from defects also ameliorate the insulation property of Nb2O5. Therefore, N-Nb2O5-x@CNTs display good electrochemical performance in both Li/Na half-cell and Li/Na hybrid capacitors. Interestingly, kilogram-scale microsphere composites can be produced in laboratory conditions by using industrial grade raw materials, implying its potential for practical application.
中文翻译:
多缺陷 N-Nb2O5-x@CNTs 并入用于 Li+/Na+ 存储的毛细管传输框架
五氧化二铌(Nb 2 O 5)作为一种应变小、传输能垒低的离子嵌入材料,其有限的离子传输速率和电导率是限制其在锂/钠存储系统中应用的主要因素。在这项工作中,通过将富含氮掺杂和空位缺陷的 Nb 2 O 5与穿透体相的碳纳米管 (CNT)结合制备微球复合材料 (N-Nb 2 O 5- x @CNTs) 。借助毛细效应,碳纳米管可以使电解质快速渗透到微球中,从而使 Li + /Na +短路运输路径。此外,碳纳米管还阻碍了电解质与Nb 2 O 5的直接接触,抑制了不可逆反应。同时,氮掺杂和氧空位缺陷降低了Li + /Na +传输的能垒,提高了传输速率,密度泛函理论证明了这一点。高导电性碳纳米管和来自缺陷的不成对电子也改善了Nb 2 O 5的绝缘性能。因此,N-Nb 2 O 5- x@CNTs 在 Li/Na 半电池和 Li/Na 混合电容器中均表现出良好的电化学性能。有趣的是,公斤级微球复合材料可以在实验室条件下使用工业级原材料生产,这意味着其在实际应用中的潜力。
更新日期:2022-04-20
中文翻译:
多缺陷 N-Nb2O5-x@CNTs 并入用于 Li+/Na+ 存储的毛细管传输框架
五氧化二铌(Nb 2 O 5)作为一种应变小、传输能垒低的离子嵌入材料,其有限的离子传输速率和电导率是限制其在锂/钠存储系统中应用的主要因素。在这项工作中,通过将富含氮掺杂和空位缺陷的 Nb 2 O 5与穿透体相的碳纳米管 (CNT)结合制备微球复合材料 (N-Nb 2 O 5- x @CNTs) 。借助毛细效应,碳纳米管可以使电解质快速渗透到微球中,从而使 Li + /Na +短路运输路径。此外,碳纳米管还阻碍了电解质与Nb 2 O 5的直接接触,抑制了不可逆反应。同时,氮掺杂和氧空位缺陷降低了Li + /Na +传输的能垒,提高了传输速率,密度泛函理论证明了这一点。高导电性碳纳米管和来自缺陷的不成对电子也改善了Nb 2 O 5的绝缘性能。因此,N-Nb 2 O 5- x@CNTs 在 Li/Na 半电池和 Li/Na 混合电容器中均表现出良好的电化学性能。有趣的是,公斤级微球复合材料可以在实验室条件下使用工业级原材料生产,这意味着其在实际应用中的潜力。