当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Hinges Stabilize Formamidinium-Based Perovskite Solar Cells with Compressive Strain
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-04-14 , DOI: 10.1002/adfm.202201193 Congbo Shi 1 , Qizhen Song 1 , Hao Wang 1, 2 , Sai Ma 1 , Chenyue Wang 3 , Xiao Zhang 1 , Jie Dou 1 , Tinglu Song 1 , Pengwan Chen 4 , Huanping Zhou 5 , Yihua Chen 1 , Cheng Zhu 1, 6 , Yang Bai 1 , Qi Chen 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-04-14 , DOI: 10.1002/adfm.202201193 Congbo Shi 1 , Qizhen Song 1 , Hao Wang 1, 2 , Sai Ma 1 , Chenyue Wang 3 , Xiao Zhang 1 , Jie Dou 1 , Tinglu Song 1 , Pengwan Chen 4 , Huanping Zhou 5 , Yihua Chen 1 , Cheng Zhu 1, 6 , Yang Bai 1 , Qi Chen 1
Affiliation
Formamidinium (FA)-based lead triiodide have emerged as promising light-harvesting materials for solar cells due to their intriguing optoelectronic properties. However, obstacles to commercialization remain regarding the primary intrinsic materials instability, wherein volatile organic components of FA+ cations are prone to escape under operational stressors. Herein, stabilizing FA-based perovskite through toughening the interface with the symmetric molecule of 1,1′-(Methylenedi-4,1-phenylene) bismaleimide (BMI) is reported. BMI with two maleimides can simultaneously bind with FA+ and/or undercoordinated Pb2+ through chemical bonding, which also compresses the resultant perovskite lattice. The chemical bonding and strain modulation synergistically not only passivate film defects, but also inhibit perovskite decomposition, thus significantly improving the intrinsic stability of perovskite films. As a result, the BMI-modified perovskite solar cells (PSCs) show improved power conversion efficiency (PCE) from 21.4% to 22.7% and enhanced long-term operational stability, maintaining 91.8% of the initial efficiency after 1000 h under continuous maximum power point tracking. The findings shed light on the synergetic effects of chemical interactions and physical regulations, which opens a new avenue for stable and efficient perovskite-based optoelectronic devices.
中文翻译:
分子铰链稳定具有压缩应变的甲脒基钙钛矿太阳能电池
甲脒 (FA) 基三碘化铅因其有趣的光电特性而成为太阳能电池的有前途的集光材料。然而,商业化的障碍仍然存在于主要固有材料的不稳定性,其中 FA +阳离子的挥发性有机成分在操作压力源下易于逸出。本文报道了通过增韧与 1,1'-(亚甲基二-4,1-亚苯基) 双马来酰亚胺 (BMI) 的对称分子的界面来稳定基于 FA 的钙钛矿。具有两个马来酰亚胺的 BMI 可以同时与 FA +和/或配位不足的 Pb 2+结合通过化学键合,这也压缩了生成的钙钛矿晶格。化学键合和应变调制协同作用不仅钝化薄膜缺陷,而且抑制钙钛矿分解,从而显着提高钙钛矿薄膜的内在稳定性。结果,BMI 改性钙钛矿太阳能电池(PSC)显示出将功率转换效率(PCE)从 21.4% 提高到 22.7% 并增强了长期运行稳定性,在连续最大功率下 1000 小时后保持初始效率的 91.8%点跟踪。这些发现揭示了化学相互作用和物理调节的协同作用,为稳定高效的钙钛矿基光电器件开辟了一条新途径。
更新日期:2022-04-14
中文翻译:
分子铰链稳定具有压缩应变的甲脒基钙钛矿太阳能电池
甲脒 (FA) 基三碘化铅因其有趣的光电特性而成为太阳能电池的有前途的集光材料。然而,商业化的障碍仍然存在于主要固有材料的不稳定性,其中 FA +阳离子的挥发性有机成分在操作压力源下易于逸出。本文报道了通过增韧与 1,1'-(亚甲基二-4,1-亚苯基) 双马来酰亚胺 (BMI) 的对称分子的界面来稳定基于 FA 的钙钛矿。具有两个马来酰亚胺的 BMI 可以同时与 FA +和/或配位不足的 Pb 2+结合通过化学键合,这也压缩了生成的钙钛矿晶格。化学键合和应变调制协同作用不仅钝化薄膜缺陷,而且抑制钙钛矿分解,从而显着提高钙钛矿薄膜的内在稳定性。结果,BMI 改性钙钛矿太阳能电池(PSC)显示出将功率转换效率(PCE)从 21.4% 提高到 22.7% 并增强了长期运行稳定性,在连续最大功率下 1000 小时后保持初始效率的 91.8%点跟踪。这些发现揭示了化学相互作用和物理调节的协同作用,为稳定高效的钙钛矿基光电器件开辟了一条新途径。