当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tough, Strong, and Conductive Graphene Fibers by Optimizing Surface Chemistry of Graphene Oxide Precursor
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-04-12 , DOI: 10.1002/adfm.202112156 Pingping Tang 1 , Zhiming Deng 1 , Yu Zhang 1 , Liu‐Xin Liu 1, 2 , Zhenguo Wang 2 , Zhong‐Zhen Yu 2 , Hao‐Bin Zhang 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-04-12 , DOI: 10.1002/adfm.202112156 Pingping Tang 1 , Zhiming Deng 1 , Yu Zhang 1 , Liu‐Xin Liu 1, 2 , Zhenguo Wang 2 , Zhong‐Zhen Yu 2 , Hao‐Bin Zhang 1
Affiliation
Graphene fibers with integrated mechanical and multifunctional properties are highly required for various potential applications. However, it remains a challenge to efficiently produce high-performance graphene fibers because of the imperfect structures and harsh graphitization conditions. Herein, a scalable additive-free wet-spinning methodology is demonstrated for producing strong, tough, and conductive pristine graphene fibers by optimizing the surface chemistry of graphene oxide (GO) sheets and controlling their spinning and assembly behavior. Benefiting from GO with fewer surface terminations and low structural defects (f-GO), the pristine f-GO fibers possess a compact and ordered microstructure and strong interlayer interactions, giving a record high tensile strength of 791.7 MPa and high toughness of 24.0 MJ m−3 due to the stretching-induced toughening behavior. After the mild chemical reduction, reduced f-GO fibers inherit the optimized microstructure and present an outstanding tensile strength of 875.9 MPa and high toughness of 13.3 MJ m−3. Furthermore, the repairable structural defects on the f-GO sheets allow the instant restoration of intrinsic conjugated structures, affording a superb electrical conductivity of 1.06 × 105 S m−1. Therefore, this study provides a facile, efficient, and scalable methodology for the fabrication of high-performance and multifunctional graphene fibers and flexible wearable devices.
中文翻译:
通过优化氧化石墨烯前体的表面化学来制备坚韧、强韧和导电的石墨烯纤维
各种潜在应用都非常需要具有综合机械和多功能特性的石墨烯纤维。然而,由于结构不完善和石墨化条件苛刻,高效生产高性能石墨烯纤维仍然是一个挑战。在此,通过优化氧化石墨烯 (GO) 片材的表面化学和控制其纺丝和组装行为,展示了一种可扩展的无添加剂湿纺方法,用于生产坚固、坚韧和导电的原始石墨烯纤维。受益于具有较少表面终止和低结构缺陷 ( f -GO) 的 GO,原始f-GO纤维具有致密有序的微观结构和强的层间相互作用,由于拉伸诱导的增韧行为,具有创纪录的791.7 MPa的高拉伸强度和24.0 MJ m -3的高韧性。在温和的化学还原后,还原的f -GO 纤维继承了优化的微观结构,具有 875.9 MPa 的出色拉伸强度和 13.3 MJ m -3的高韧性。此外,f -GO 片材上可修复的结构缺陷允许立即恢复本征共轭结构,提供 1.06 × 10 5 S m -1的极好电导率. 因此,本研究为制造高性能和多功能石墨烯纤维和柔性可穿戴设备提供了一种简便、高效且可扩展的方法。
更新日期:2022-04-12
中文翻译:
通过优化氧化石墨烯前体的表面化学来制备坚韧、强韧和导电的石墨烯纤维
各种潜在应用都非常需要具有综合机械和多功能特性的石墨烯纤维。然而,由于结构不完善和石墨化条件苛刻,高效生产高性能石墨烯纤维仍然是一个挑战。在此,通过优化氧化石墨烯 (GO) 片材的表面化学和控制其纺丝和组装行为,展示了一种可扩展的无添加剂湿纺方法,用于生产坚固、坚韧和导电的原始石墨烯纤维。受益于具有较少表面终止和低结构缺陷 ( f -GO) 的 GO,原始f-GO纤维具有致密有序的微观结构和强的层间相互作用,由于拉伸诱导的增韧行为,具有创纪录的791.7 MPa的高拉伸强度和24.0 MJ m -3的高韧性。在温和的化学还原后,还原的f -GO 纤维继承了优化的微观结构,具有 875.9 MPa 的出色拉伸强度和 13.3 MJ m -3的高韧性。此外,f -GO 片材上可修复的结构缺陷允许立即恢复本征共轭结构,提供 1.06 × 10 5 S m -1的极好电导率. 因此,本研究为制造高性能和多功能石墨烯纤维和柔性可穿戴设备提供了一种简便、高效且可扩展的方法。