当前位置: X-MOL 学术ACS Appl. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electronic and Optical Properties of Threading Dislocations in n-Type 4H-SiC
ACS Applied Electronic Materials ( IF 4.3 ) Pub Date : 2022-04-12 , DOI: 10.1021/acsaelm.1c01330
Hao Luo 1, 2 , Jiajun Li 1, 2 , Guang Yang 3 , Ruzhong Zhu 2 , Yiqiang Zhang 4 , Rong Wang 1, 2 , Deren Yang 1, 2 , Xiaodong Pi 1, 2
Affiliation  

Despite the decades of development of the single-crystal growth and homoepitaxy of 4H silicon carbide (4H-SiC), high-density threading dislocations (TDs) still remain in 4H-SiC. In this work, we show that the diameters, depths, and inclination angles of molten-alkali etched pits can be employed to discriminate threading edge dislocations (TEDs), threading screw dislocations (TSDs), and threading mixed dislocations (TMDs) in 4H-SiC. The formation of etch pits of TEDs, TSDs, and TMDs during molten-alkali etching is found to be assisted by the dislocation line, dislocation step, and successively dislocation line and step, respectively. By inspecting the surface potentials of n-type 4H-SiC with Kelvin probe force microscopy (KPFM), we show that both TSDs and TEDs behave as donors in n-type 4H-SiC, which gives rise to charge depletion at TDs in n-type 4H-SiC. TDs are found to participate in the broad band D1 luminescence of 4H-SiC, as evidenced by the fact that the microphotoluminescence (micro-PL) intensities at the centers of TDs are stronger than those in dislocation-free regions of 4H-SiC. Understandings gained in this work may help the optimization of n-type 4H-SiC by manipulating the electronic and optical properties of TDs.

中文翻译:

n 型 4H-SiC 中螺纹位错的电子和光学特性

尽管 4H 碳化硅 (4H-SiC) 的单晶生长和同质外延已经发展了数十年,但高密度螺纹位错 (TDs) 仍然存在于 4H-SiC 中。在这项工作中,我们表明熔融碱蚀坑的直径、深度和倾角可用于区分 4H- 中的螺纹刃位错 (TEDs)、螺纹位错 (TSDs) 和螺纹混合位错 (TMDs)。碳化硅。发现熔碱刻蚀过程中 TEDs、TSDs 和 TMDs 刻蚀坑的形成分别由位错线、位错台阶和相继的位错线和台阶辅助。通过用开尔文探针力显微镜 (KPFM) 检查n型 4H-SiC的表面电位,我们表明 TSD 和 TED 在n中都表现为供体-型 4H-SiC,在n型 4H-SiC中引起 TD 处的电荷耗尽。发现 TDs 参与了 4H-SiC 的宽带 D1 发光,这一事实证明,TDs 中心的微光致发光(micro-PL)强度比 4H-SiC 的无位错区域强。在这项工作中获得的理解可能有助于通过操纵 TD 的电子和光学特性来优化n型 4H-SiC。
更新日期:2022-04-12
down
wechat
bug