当前位置: X-MOL 学术Anal. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Intramolecular Charge Transfer–Förster Resonance Energy Transfer Integrated Unimolecular Platform for Two-Photon Ratiometric Fluorescence Sensing of Methionine Sulfoxide Reductases in Live-Neurons and Mouse Brain Tissues
Analytical Chemistry ( IF 6.7 ) Pub Date : 2022-04-12 , DOI: 10.1021/acs.analchem.2c00415
Chen Chen 1 , Yue Pan 1 , Dong Li 1 , Yujie Han 1 , Qi-Wei Zhang 1 , Yang Tian 1
Affiliation  

Oxidative stress in organisms is a factor leading to a series of diseases including tumors and neurological disorders, while methionine sulfoxide reductases (Msrs) may provide an antioxidant and self-repair mechanism through redox cycles of methionine residues in proteins. Thus, it is important to understand the crucial role of Msrs in maintaining the redox homeostasis. However, it remains a great challenge for real-time and quantitative monitoring of Msrs in live systems due to the lack of appropriate sensing tools. Herein, a novel unimolecular platform integrating the intramolecular charge transfer (ICT) and Förster resonance energy transfer (FRET) dual mechanisms was successfully developed. By employing the highly specific Msrs-catalyzed reduction from the electron-withdrawing sulfoxide moiety in the probe to an electron-donating sulfide group, a synergistic ICT–FRET activation process was achieved, leading to a ratiometric fluorescence response toward Msrs with high selectivity, sensitivity, and accuracy. Moreover, benefiting from the favorable features, including mitochondria-targeting, near-infrared two-photon excitation, low cytotoxicity, good stability, and biocompatibility, the probe was successfully used for monitoring mitochondrial Msrs levels in live-neurons, and a positively correlated up-regulation of endogenous Msrs levels under O2•- stimulation was observed for the first time, confirming a Msrs-involved adaptive antioxidant mechanism in neurons. Furthermore, two-photon microscopic imaging of various regions in Alzheimer’s disease (AD) mice brains revealed a down-regulated Msrs levels compared with that in normal brains, especially in the cornuammonis of the hippocampus region, which may in turn lead to an aggravation of AD pathogenesis due to the weakened antioxidant and self-repair capability of neurons.

中文翻译:

用于活神经元和小鼠脑组织中蛋氨酸亚砜还原酶的双光子比率荧光传感的分子内电荷转移-Förster 共振能量转移集成单分子平台

生物体内的氧化应激是导致包括肿瘤和神经系统疾病在内的一系列疾病的因素,而蛋氨酸亚砜还原酶(Msrs)可能通过蛋白质中蛋氨酸残基的氧化还原循环提供抗氧化和自我修复机制。因此,了解 Msrs 在维持氧化还原稳态中的关键作用非常重要。然而,由于缺乏适当的传感工具,对实时系统中的 Msrs 进行实时和定量监测仍然是一个巨大的挑战。在此,成功开发了一种集成分子内电荷转移(ICT)和福斯特共振能量转移(FRET)双重机制的新型单分子平台。通过使用高度特异性 Msrs 催化的从探针中的吸电子亚砜部分还原为给电子硫化物基团,实现了协同的 ICT-FRET 激活过程,导致对 Msrs 的比率荧光响应具有高选择性、灵敏度和准确性。此外,得益于线粒体靶向、近红外双光子激发、低细胞毒性、良好的稳定性和生物相容性等有利特性,该探针成功地用于监测活神经元中的线粒体Msrs水平,并且与上调正相关。 -O下内源性Msrs水平的调节2 •-首次观察到刺激,证实了神经元中Msrs 参与的适应性抗氧化机制。此外,阿尔茨海默病 (AD) 小鼠大脑不同区域的双光子显微成像显示,与正常大脑相比,Msrs 水平下调,尤其是在海马区的角质层,这可能反过来导致AD发病机制是由于神经元的抗氧化和自我修复能力减弱。
更新日期:2022-04-12
down
wechat
bug