当前位置: X-MOL 学术Eng. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sand Cat swarm optimization: a nature-inspired algorithm to solve global optimization problems
Engineering with Computers Pub Date : 2022-04-11 , DOI: 10.1007/s00366-022-01604-x
Amir Seyyedabbasi 1 , Farzad Kiani 1
Affiliation  

This study proposes a new metaheuristic algorithm called sand cat swarm optimization (SCSO) which mimics the sand cat behavior that tries to survive in nature. These cats are able to detect low frequencies below 2 kHz and also have an incredible ability to dig for prey. The proposed algorithm, inspired by these two features, consists of two main phases (search and attack). This algorithm controls the transitions in the exploration and exploitation phases in a balanced manner and performed well in finding good solutions with fewer parameters and operations. It is carried out by finding the direction and speed of the appropriate movements with the defined adaptive strategy. The SCSO algorithm is tested with 20 well-known along with modern 10 complex test functions of CEC2019 benchmark functions and the obtained results are also compared with famous metaheuristic algorithms. According to the results, the algorithm that found the best solution in 63.3% of the test functions is SCSO. Moreover, the SCSO algorithm is applied to seven challenging engineering design problems such as welded beam design, tension/compression spring design, pressure vessel design, piston lever, speed reducer design, three-bar truss design, and cantilever beam design. The obtained results show that the SCSO performs successfully on convergence rate and in locating all or most of the local/global optima and outperforms other compared methods.



中文翻译:

沙猫群优化:一种解决全局优化问题的自然启发算法

这项研究提出了一种新的元启发式算法,称为沙猫群优化 (SCSO),它模仿试图在自然界中生存的沙猫行为。这些猫能够探测到低于 2 kHz 的低频,并且具有难以置信的挖掘猎物的能力。受这两个特征的启发,所提出的算法包括两个主要阶段(搜索和攻击)。该算法以平衡的方式控制探索和利用阶段的转换,并在找到具有较少参数和操作的良好解决方案方面表现良好。它是通过使用定义的自适应策略找到适当运动的方向和速度来执行的。SCSO 算法用 20 个著名的 CEC2019 基准函数和现代 10 个复杂的测试函数进行了测试,并将所得结果与著名的元启发式算法进行了比较。根据结果​​,在 63.3% 的测试函数中找到最佳解的算法是 SCSO。此外,SCSO算法应用于焊接梁设计、拉压弹簧设计、压力容器设计、活塞杆设计、减速器设计、三杆桁架设计、悬臂梁设计等七大具有挑战性的工程设计问题。获得的结果表明,SCSO 在收敛速度和定位全部或大部分局部/全局最优值方面取得了成功,并且优于其他比较方法。3% 的测试功能是 SCSO。此外,SCSO算法应用于焊接梁设计、拉压弹簧设计、压力容器设计、活塞杆设计、减速器设计、三杆桁架设计、悬臂梁设计等七大具有挑战性的工程设计问题。获得的结果表明,SCSO 在收敛速度和定位全部或大部分局部/全局最优值方面取得了成功,并且优于其他比较方法。3% 的测试功能是 SCSO。此外,SCSO算法应用于焊接梁设计、拉压弹簧设计、压力容器设计、活塞杆设计、减速器设计、三杆桁架设计、悬臂梁设计等七大具有挑战性的工程设计问题。获得的结果表明,SCSO 在收敛速度和定位全部或大部分局部/全局最优值方面取得了成功,并且优于其他比较方法。

更新日期:2022-04-11
down
wechat
bug