Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Toward a high performance and strong resilience wind energy harvester assembly utilizing flow-induced vibration: Role of hysteresis
Energy ( IF 9.0 ) Pub Date : 2022-04-06 , DOI: 10.1016/j.energy.2022.123921
Xiantao Fan 1, 2 , Kai Guo 3 , Yang Wang 1, 4
Energy ( IF 9.0 ) Pub Date : 2022-04-06 , DOI: 10.1016/j.energy.2022.123921
Xiantao Fan 1, 2 , Kai Guo 3 , Yang Wang 1, 4
Affiliation
![]() |
Wind energy harvester utilizing flow-induced vibration (FIV-WEH) has attracted much attention because of its ability to capture low-speed wind energy. This study is motivated to design a reliable FIV-WEH assembly in a wind farm, and to understand the altered environmental flow and disturbed output performance through large-eddy simulations and wind tunnel experiments, for the sake of harnessing fluctuating near-ground wind energy efficiently. The results demonstrates that the proposed eco-friendly FIV-WEH assembly has less impact on the surroundings due to the fast recovery of turbulent wake. Moreover, it is equipped with remarkable hysteresis caused by the delay of wake transition from 2P to C mode, which can enhance the output power, effective wind band, and more importantly, resilience. The resilience guarantees that the FIV-WEH assembly can harvest the fluctuating wind resources optimally even under strong turbulence intensity. Specifically, compact FIV-WEH assembly ( ≤ 1.5, where is dimensionless streamwise span) based on extended-body regime has a low cut-in speed (3 m/s), showing great potential to harvest breeze energy in a near-ground residential environment. Loose FIV-WEH assembly (1.5 < < 5) based on reattachment regime has a large cut-in speed (9 m/s) and low span-sensitivity, which can be flexibly adjusted to extract the wind energy in spacious wind-abundant areas. Finally, two strategies developed by modifying surfaces of FIV-WEH assembly can further enhance the resilience and conversion efficiency by approximately 200%.
中文翻译:
利用流致振动实现高性能和强弹性风能采集器组件:磁滞的作用
利用流致振动的风能采集器(FIV-WEH)因其捕获低速风能的能力而备受关注。本研究的目的是在风电场中设计可靠的FIV-WEH组件,并通过大涡模拟和风洞实验了解环境流动的变化和扰动的输出性能,以便有效地利用波动的近地风能。结果表明,由于湍流尾流的快速恢复,所提出的环保 FIV-WEH 组件对周围环境的影响较小。而且,它还配备了由2P到C模式的尾流过渡延迟引起的显着迟滞,可以增强输出功率、有效风带,更重要的是增强弹性。这种弹性保证了 FIV-WEH 组件即使在强湍流强度下也能最佳地收集波动的风资源。具体而言,基于扩展体体系的紧凑型 FIV-WEH 组件(≤ 1.5,其中无量纲流向跨度)具有较低的切入速度(3 m/s),显示出在近地面住宅中收集微风能的巨大潜力环境。基于再附着机制的松散FIV-WEH组件(1.5 < < 5)具有较大的切入速度(9 m/s)和较低的跨距敏感性,可灵活调节以在宽敞的风资源丰富的地区提取风能。最后,通过修改 FIV-WEH 组件表面开发的两种策略可以进一步将弹性和转换效率提高约 200%。
更新日期:2022-04-06
中文翻译:

利用流致振动实现高性能和强弹性风能采集器组件:磁滞的作用
利用流致振动的风能采集器(FIV-WEH)因其捕获低速风能的能力而备受关注。本研究的目的是在风电场中设计可靠的FIV-WEH组件,并通过大涡模拟和风洞实验了解环境流动的变化和扰动的输出性能,以便有效地利用波动的近地风能。结果表明,由于湍流尾流的快速恢复,所提出的环保 FIV-WEH 组件对周围环境的影响较小。而且,它还配备了由2P到C模式的尾流过渡延迟引起的显着迟滞,可以增强输出功率、有效风带,更重要的是增强弹性。这种弹性保证了 FIV-WEH 组件即使在强湍流强度下也能最佳地收集波动的风资源。具体而言,基于扩展体体系的紧凑型 FIV-WEH 组件(≤ 1.5,其中无量纲流向跨度)具有较低的切入速度(3 m/s),显示出在近地面住宅中收集微风能的巨大潜力环境。基于再附着机制的松散FIV-WEH组件(1.5 < < 5)具有较大的切入速度(9 m/s)和较低的跨距敏感性,可灵活调节以在宽敞的风资源丰富的地区提取风能。最后,通过修改 FIV-WEH 组件表面开发的两种策略可以进一步将弹性和转换效率提高约 200%。