当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Assembly of AIEgen-Based Fluorescent Metal–Organic Framework Nanosheets and Seaweed Cellulose Nanofibrils for Humidity Sensing and UV-Shielding
Advanced Materials ( IF 27.4 ) Pub Date : 2022-04-07 , DOI: 10.1002/adma.202201470 Fangchang Tan 1 , Li Zha 1 , Qi Zhou 1, 2
Advanced Materials ( IF 27.4 ) Pub Date : 2022-04-07 , DOI: 10.1002/adma.202201470 Fangchang Tan 1 , Li Zha 1 , Qi Zhou 1, 2
Affiliation
Integrating synthetic low-dimensional nanomaterials such as metal–organic framework (MOF) nanosheets with a sustainable biopolymer is a promising strategy to endow composites with attractive structural and functional properties for expanded applications. Herein, aggregation-induced-emission luminogen (AIEgen)-based MOF bulk crystals are successfully exfoliated into ultrathin 2D nanosheets. Seaweed cellulose nanofibrils (CNFs) are assembled with low amounts (0.3 to 4.0 wt%) of the 2D nanosheets to generate luminescent composites. The 2D nanosheets are adsorbed onto the CNFs in dilute water suspensions owing to the flexibility of the MOF nanosheets and the high aspect ratio of the CNFs. Transparent films are prepared by solution casting from a water suspension of the CNF-MOF assembly. The fluorescence emission of the composite films is enhanced because of the favored affinity between MOF nanosheets and CNFs. Remarkably, these films demonstrate excellent UV-shielding capacity and high optical transmittance at the visible wavelength range. The composite films also show reversible changes in fluorescence emission intensity in response to ambient humidity. The tensile strength and modulus of the composite films are also enhanced owing to the increased adhesion between CNFs through the adsorbed MOF nanosheets. This work provides a novel pathway to fabricate luminescent CNFs-based composites with tunable optical properties for functional materials.
中文翻译:
基于 AIEgen 的荧光金属-有机框架纳米片和海藻纤维素纳米纤维的组装,用于湿度传感和紫外线屏蔽
将合成的低维纳米材料(如金属有机框架(MOF)纳米片)与可持续的生物聚合物相结合是一种很有前景的策略,可以赋予复合材料具有吸引力的结构和功能特性以扩展应用。在此,基于聚集诱导发光(AIEgen)的 MOF 块状晶体成功剥离成超薄二维纳米片。海藻纤维素纳米纤维 (CNF) 与少量(0.3 至 4.0 wt%)的 2D 纳米片组装成发光复合材料。由于 MOF 纳米片的柔韧性和 CNF 的高纵横比,2D 纳米片在稀水悬浮液中吸附到 CNF 上。透明薄膜是通过溶液流延从 CNF-MOF 组件的水悬浮液中制备的。由于 MOF 纳米片和 CNF 之间的良好亲和力,复合薄膜的荧光发射增强。值得注意的是,这些薄膜在可见光波长范围内表现出优异的紫外线屏蔽能力和高透光率。复合膜还显示出响应环境湿度的荧光发射强度的可逆变化。由于通过吸附的 MOF 纳米片增加了 CNF 之间的粘附力,复合膜的拉伸强度和模量也得到了增强。这项工作为制造具有可调节光学特性的发光 CNF 基复合材料提供了一条新途径,用于功能材料。这些薄膜在可见光波长范围内表现出优异的紫外线屏蔽能力和高透光率。复合膜还显示出响应环境湿度的荧光发射强度的可逆变化。由于通过吸附的 MOF 纳米片增加了 CNF 之间的粘附力,复合膜的拉伸强度和模量也得到了增强。这项工作为制造具有可调节光学特性的发光 CNF 基复合材料提供了一条新途径,用于功能材料。这些薄膜在可见光波长范围内表现出优异的紫外线屏蔽能力和高透光率。复合膜还显示出响应环境湿度的荧光发射强度的可逆变化。由于通过吸附的 MOF 纳米片增加了 CNF 之间的粘附力,复合膜的拉伸强度和模量也得到了增强。这项工作为制造具有可调节光学特性的发光 CNF 基复合材料提供了一条新途径,用于功能材料。
更新日期:2022-04-07
中文翻译:
基于 AIEgen 的荧光金属-有机框架纳米片和海藻纤维素纳米纤维的组装,用于湿度传感和紫外线屏蔽
将合成的低维纳米材料(如金属有机框架(MOF)纳米片)与可持续的生物聚合物相结合是一种很有前景的策略,可以赋予复合材料具有吸引力的结构和功能特性以扩展应用。在此,基于聚集诱导发光(AIEgen)的 MOF 块状晶体成功剥离成超薄二维纳米片。海藻纤维素纳米纤维 (CNF) 与少量(0.3 至 4.0 wt%)的 2D 纳米片组装成发光复合材料。由于 MOF 纳米片的柔韧性和 CNF 的高纵横比,2D 纳米片在稀水悬浮液中吸附到 CNF 上。透明薄膜是通过溶液流延从 CNF-MOF 组件的水悬浮液中制备的。由于 MOF 纳米片和 CNF 之间的良好亲和力,复合薄膜的荧光发射增强。值得注意的是,这些薄膜在可见光波长范围内表现出优异的紫外线屏蔽能力和高透光率。复合膜还显示出响应环境湿度的荧光发射强度的可逆变化。由于通过吸附的 MOF 纳米片增加了 CNF 之间的粘附力,复合膜的拉伸强度和模量也得到了增强。这项工作为制造具有可调节光学特性的发光 CNF 基复合材料提供了一条新途径,用于功能材料。这些薄膜在可见光波长范围内表现出优异的紫外线屏蔽能力和高透光率。复合膜还显示出响应环境湿度的荧光发射强度的可逆变化。由于通过吸附的 MOF 纳米片增加了 CNF 之间的粘附力,复合膜的拉伸强度和模量也得到了增强。这项工作为制造具有可调节光学特性的发光 CNF 基复合材料提供了一条新途径,用于功能材料。这些薄膜在可见光波长范围内表现出优异的紫外线屏蔽能力和高透光率。复合膜还显示出响应环境湿度的荧光发射强度的可逆变化。由于通过吸附的 MOF 纳米片增加了 CNF 之间的粘附力,复合膜的拉伸强度和模量也得到了增强。这项工作为制造具有可调节光学特性的发光 CNF 基复合材料提供了一条新途径,用于功能材料。