当前位置: X-MOL 学术Bioelectrochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A biophotoelectrode based on boronic acid-modified Chlorella vulgaris cells integrated within a redox polymer
Bioelectrochemistry ( IF 4.8 ) Pub Date : 2022-04-05 , DOI: 10.1016/j.bioelechem.2022.108128
Zaida Herrero-Medina 1 , Panpan Wang 2 , Anna Lielpetere 2 , Abdulaziz S Bashammakh 3 , Abdulrahman O Alyoubi 3 , Ioanis Katakis 1 , Felipe Conzuelo 4 , Wolfgang Schuhmann 2
Affiliation  

Green microalgae are gaining attention in the renewable energy field due to their ability to convert light into energy in biophotovoltaic (BPV) cells. The poor exogenous electron transfer kinetics of such microorganisms requires the use of redox mediators to improve the performance of related biodevices. Redox polymers are advantageous in the development of subcellular-based BPV devices by providing an improved electron transfer while simultaneously serving as immobilization matrix. However, these surface-confined redox mediators have been rarely used in microorganism-based BPVs. Since electron transfer relies on the proximity between cells and the redox centres at the polymer matrix, the development of molecularly tailored surfaces is of great significance to fabricate more efficient BPV cells. We propose a bioanode integrating Chlorella vulgaris embedded in an Os complex-modified redox polymer. Chlorella vulgaris cells are functionalized with 3-aminophenylboronic acid that exhibits high affinity to saccharides in the cell wall as a basis for an improved integration with the redox polymer. Maximum photocurrents of (5 ± 1) µA cm−2 are achieved. The developed bioanode is further coupled to a bilirubin oxidase-based biocathode for a proof-of-concept BPV cell. The obtained results encourage the optimization of electron-transfer pathways toward the development of advanced microalgae-based biophotovoltaic devices.



中文翻译:

基于硼酸修饰的小球藻细胞的生物光电极集成在氧化还原聚合物中

绿色微藻因其在生物光伏(BPV)电池中将光转化为能量的能力而在可再生能源领域受到关注。此类微生物较差的外源电子转移动力学需要使用氧化还原介质来提高相关生物器件的性能。氧化还原聚合物在基于亚细胞的 BPV 装置的开发中具有优势,因为它提供了改进的电子转移,同时用作固定基质。然而,这些表面受限的氧化还原介质很少用于基于微生物的 BPV。由于电子转移依赖于电池和聚合物基质上的氧化还原中心之间的接近度,因此开发分子定制的表面对于制造更高效的 BPV 电池具有重要意义。我们提出了一种集成的生物阳极嵌入 Os 复合物改性的氧化还原聚合物中的普通小球藻。小球藻细胞用 3-氨基苯基硼酸功能化,该酸对细胞壁中的糖类表现出高亲和力,作为改善与氧化还原聚合物整合的基础。实现了 (5 ± 1) µA cm -2的最大光电流。开发的生物阳极进一步与基于胆红素氧化酶的生物阴极耦合,用于概念验证 BPV 电池。所获得的结果有助于优化电子转移途径,以开发先进的基于微藻的生物光伏器件。

更新日期:2022-04-05
down
wechat
bug