Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Defect Engineered Electrocatalyst that Promotes High-Efficiency Urea Synthesis under Ambient Conditions
ACS Nano ( IF 15.8 ) Pub Date : 2022-04-01 , DOI: 10.1021/acsnano.2c01956 Chade Lv 1, 2 , Carmen Lee 2 , Lixiang Zhong 2 , Hengjie Liu 3 , Jiawei Liu 2 , Lan Yang 2 , Chunshuang Yan 1 , Wei Yu 4 , Huey Hoon Hng 2 , Zeming Qi 3 , Li Song 3 , Shuzhou Li 2 , Kian Ping Loh 4 , Qingyu Yan 2 , Guihua Yu 5
ACS Nano ( IF 15.8 ) Pub Date : 2022-04-01 , DOI: 10.1021/acsnano.2c01956 Chade Lv 1, 2 , Carmen Lee 2 , Lixiang Zhong 2 , Hengjie Liu 3 , Jiawei Liu 2 , Lan Yang 2 , Chunshuang Yan 1 , Wei Yu 4 , Huey Hoon Hng 2 , Zeming Qi 3 , Li Song 3 , Shuzhou Li 2 , Kian Ping Loh 4 , Qingyu Yan 2 , Guihua Yu 5
Affiliation
Synthesizing urea from nitrate and carbon dioxide through an electrocatalysis approach under ambient conditions is extraordinarily sustainable. However, this approach still lacks electrocatalysts developed with high catalytic efficiencies, which is a key challenge. Here, we report the high-efficiency electrocatalytic synthesis of urea using indium oxyhydroxide with oxygen vacancy defects, which enables selective C–N coupling toward standout electrocatalytic urea synthesis activity. Analysis by operando synchrotron radiation–Fourier transform infrared spectroscopy showcases that *CO2NH2 protonation is the potential-determining step for the overall urea formation process. As such, defect engineering is employed to lower the energy barrier for the protonation of the *CO2NH2 intermediate to accelerate urea synthesis. Consequently, the defect-engineered catalyst delivers a high Faradaic efficiency of 51.0%. In conjunction with an in-depth study on the catalytic mechanism, this design strategy may facilitate the exploration of advanced catalysts for electrochemical urea synthesis and other sustainable applications.
中文翻译:
一种在环境条件下促进高效尿素合成的缺陷工程电催化剂
在环境条件下通过电催化方法从硝酸盐和二氧化碳合成尿素是非常可持续的。然而,这种方法仍然缺乏具有高催化效率的电催化剂,这是一个关键挑战。在这里,我们报告了使用具有氧空位缺陷的氢氧化铟高效电催化合成尿素,这使得选择性 C-N 偶联能够实现出色的电催化尿素合成活性。原位同步辐射-傅里叶变换红外光谱分析表明,*CO 2 NH 2质子化是整个尿素形成过程的潜在决定步骤。因此,采用缺陷工程来降低 *CO 2质子化的能垒NH 2加速尿素合成的中间体。因此,缺陷工程催化剂提供了 51.0% 的高法拉第效率。结合对催化机理的深入研究,这种设计策略可能有助于探索用于电化学尿素合成和其他可持续应用的先进催化剂。
更新日期:2022-04-01
中文翻译:
一种在环境条件下促进高效尿素合成的缺陷工程电催化剂
在环境条件下通过电催化方法从硝酸盐和二氧化碳合成尿素是非常可持续的。然而,这种方法仍然缺乏具有高催化效率的电催化剂,这是一个关键挑战。在这里,我们报告了使用具有氧空位缺陷的氢氧化铟高效电催化合成尿素,这使得选择性 C-N 偶联能够实现出色的电催化尿素合成活性。原位同步辐射-傅里叶变换红外光谱分析表明,*CO 2 NH 2质子化是整个尿素形成过程的潜在决定步骤。因此,采用缺陷工程来降低 *CO 2质子化的能垒NH 2加速尿素合成的中间体。因此,缺陷工程催化剂提供了 51.0% 的高法拉第效率。结合对催化机理的深入研究,这种设计策略可能有助于探索用于电化学尿素合成和其他可持续应用的先进催化剂。