当前位置:
X-MOL 学术
›
ACS Mater. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hierarchical Heterojunction Enhanced Photodoping of Polymeric Semiconductor for Photodetection and Photothermoelectric Applications
ACS Materials Letters ( IF 9.6 ) Pub Date : 2022-03-30 , DOI: 10.1021/acsmaterialslett.2c00085 Zhen Ji 1, 2 , Wenrui Zhao 1, 2 , Lanyi Xiang 1, 2 , Jiamin Ding 1, 2 , Dongyang Wang 1, 2 , Xiaojuan Dai 1 , Liyao Liu 1 , Fengjiao Zhang 2 , Ye Zou 1 , Chong-an Di 1
ACS Materials Letters ( IF 9.6 ) Pub Date : 2022-03-30 , DOI: 10.1021/acsmaterialslett.2c00085 Zhen Ji 1, 2 , Wenrui Zhao 1, 2 , Lanyi Xiang 1, 2 , Jiamin Ding 1, 2 , Dongyang Wang 1, 2 , Xiaojuan Dai 1 , Liyao Liu 1 , Fengjiao Zhang 2 , Ye Zou 1 , Chong-an Di 1
Affiliation
The realization of efficient photodoping of polymeric semiconductors (PSCs) is crucial for the construction of high-performance photodetectors and photothermoelectric devices. Traditional layer or bulk heterojunction can enhance the photodoping of PSCs but suffers from a trade-off in balancing photocarrier generation and charge transport. Herein, we report on a hierarchical heterojunction comprising a bulk heterojunction photoactive layer and a separate charge transport layer, fabricated by using a simple orthogonal solvent method. The well-designed interfacial energy-level alignment of the hierarchical heterojunction contributes to efficient exciton separation and charge transfer into the charge transport layer, thus resulting in improved photodetection and photothermoelectric conversion. The photodetector exhibits photosensitivity and photoresponsivity of up to 1.1 × 107 and 9.2 × 106 A W–1, respectively, while the photothermoelectric device displays a maximum power factor of 13.7 μW m–1 K–2. These results indicate that hierarchical heterojunction-enhanced photodoping can serve as a powerful strategy to enable the multifunctional applications of PSCs.
中文翻译:
用于光电探测和光热电应用的聚合物半导体的分层异质结增强光电掺杂
实现聚合物半导体(PSC)的高效光电掺杂对于构建高性能光电探测器和光热电器件至关重要。传统的层或体异质结可以增强 PSC 的光掺杂,但在平衡光载流子生成和电荷传输方面存在折衷。在这里,我们报告了一种分层异质结,包括一个体异质结光敏层和一个单独的电荷传输层,通过使用简单的正交溶剂法制造。分级异质结的精心设计的界面能级排列有助于有效的激子分离和电荷转移到电荷传输层,从而改善光电探测和光热电转换。分别为7和 9.2 × 10 6 AW –1,而光热电器件的最大功率因数为 13.7 μW m –1 K –2。这些结果表明,分层异质结增强的光电掺杂可以作为一种强大的策略来实现 PSC 的多功能应用。
更新日期:2022-03-30
中文翻译:
用于光电探测和光热电应用的聚合物半导体的分层异质结增强光电掺杂
实现聚合物半导体(PSC)的高效光电掺杂对于构建高性能光电探测器和光热电器件至关重要。传统的层或体异质结可以增强 PSC 的光掺杂,但在平衡光载流子生成和电荷传输方面存在折衷。在这里,我们报告了一种分层异质结,包括一个体异质结光敏层和一个单独的电荷传输层,通过使用简单的正交溶剂法制造。分级异质结的精心设计的界面能级排列有助于有效的激子分离和电荷转移到电荷传输层,从而改善光电探测和光热电转换。分别为7和 9.2 × 10 6 AW –1,而光热电器件的最大功率因数为 13.7 μW m –1 K –2。这些结果表明,分层异质结增强的光电掺杂可以作为一种强大的策略来实现 PSC 的多功能应用。