当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tuning Exchange Coupling in a New Family of Nanocrystal-Based Granular Multiferroics Using an Applied Electric Field
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-03-30 , DOI: 10.1021/acsami.1c20599 Stephen S Sasaki 1 , Oleg G Udalov 2, 3 , Jeffrey A Kurish 1 , Momoko Ishii 1 , Igor S Beloborodov 2 , Sarah H Tolbert 4, 5
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-03-30 , DOI: 10.1021/acsami.1c20599 Stephen S Sasaki 1 , Oleg G Udalov 2, 3 , Jeffrey A Kurish 1 , Momoko Ishii 1 , Igor S Beloborodov 2 , Sarah H Tolbert 4, 5
Affiliation
In this work, we demonstrate an experimental realization of a granular multiferroic composite, where the magnetic state of a nanocrystal array is modified by tuning the interparticle exchange coupling using an applied electric field. Previous theoretical models of a granular multiferroic composite predicted a unique magnetoelectric coupling mechanism, in which the magnetic spins of the ensemble are governed by interparticle exchange. The extent of these exchange interactions can be controlled by varying the local dielectric environment between grains. We specifically utilize the strong dielectric dependence of ferroelectric materials to modify the interparticle coupling of closely spaced magnetic nanoparticles using either a change in temperature or an electric field. This coupling modifies the ensemble magnetic coercivity and thus the superparamagnetic-to-ferromagnetic phase transition temperature. Through the use of two different ferroelectrics, our results suggest that this magnetoelectric coupling mechanism could be generalized as a new class of multiferroic material, applicable to a broad range of ferroelectric/magnetic nanocrystal composites.
中文翻译:
使用外加电场在基于纳米晶体的新型颗粒多铁性材料中调谐交换耦合
在这项工作中,我们展示了粒状多铁复合材料的实验实现,其中通过使用施加的电场调整粒子间交换耦合来改变纳米晶体阵列的磁状态。以前的粒状多铁复合材料的理论模型预测了一种独特的磁电耦合机制,其中整体的磁自旋受粒子间交换的控制。这些交换相互作用的程度可以通过改变晶粒之间的局部介电环境来控制。我们专门利用铁电材料的强介电依赖性来改变紧密间隔的磁性纳米粒子的粒子间耦合,使用温度或电场的变化。这种耦合改变了整体磁矫顽力,从而改变了超顺磁性到铁磁性的相变温度。通过使用两种不同的铁电体,我们的结果表明,这种磁电耦合机制可以概括为一类新的多铁性材料,适用于广泛的铁电/磁性纳米晶体复合材料。
更新日期:2022-03-30
中文翻译:
使用外加电场在基于纳米晶体的新型颗粒多铁性材料中调谐交换耦合
在这项工作中,我们展示了粒状多铁复合材料的实验实现,其中通过使用施加的电场调整粒子间交换耦合来改变纳米晶体阵列的磁状态。以前的粒状多铁复合材料的理论模型预测了一种独特的磁电耦合机制,其中整体的磁自旋受粒子间交换的控制。这些交换相互作用的程度可以通过改变晶粒之间的局部介电环境来控制。我们专门利用铁电材料的强介电依赖性来改变紧密间隔的磁性纳米粒子的粒子间耦合,使用温度或电场的变化。这种耦合改变了整体磁矫顽力,从而改变了超顺磁性到铁磁性的相变温度。通过使用两种不同的铁电体,我们的结果表明,这种磁电耦合机制可以概括为一类新的多铁性材料,适用于广泛的铁电/磁性纳米晶体复合材料。