Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-03-26 , DOI: 10.1016/j.cej.2022.135849 Shun Wu 1 , Huibin Liu 1 , Guangyu Lei 1 , Hongwei He 1 , Jiawen Wu 1 , Guoliang Zhang 1 , Fengbao Zhang 1 , Wenchao Peng 1, 2 , Xiaobin Fan 1, 2 , Yang Li 1, 2
The requirement of sustainable energy is of great significance for easing the energy shortage crisis, in which the oxygen reduction reaction (ORR) in metal-air batteries and fuel cells plays a crucial role in efficient energy conversion. The development of noble-metal-free, efficient, and stable ORR electrocatalysts is highly desirable but remains a significant challenge. Herein, we report an atomically dispersed Fe and N co-doped hierarchically porous carbon (Fe-SA/HPC) catalyst derived from two-dimensional leaf-like ZIF-L with preeminent ORR activity. The Fe-SA/HPC catalyst, benefitting from hierarchically porous structure and rich highly-dispersed active sites of FeNx, put up ORR performance with a half-wave potential (E1/2) of 0.91 V vs. the reversible hydrogen electrode (RHE) in 0.1 M KOH electrolyte. The current density with a 0.382 mg cm−2 loading of catalyst in a rotating disk electrode (RDE) test can reach 24.65 mA cm−2 at 0.8 V, which is nearly twice that of commercial 20 wt% Pt/C. Density functional theory calculations demonstrate that the co-regulation of defects and graphitic nitrogen can optimize the local electronic redistribution for active sites and endow them with a lower free-energy barrier towards the ORR. This work provides certain inspiration for the development of highly reactive atomic metal catalysts through rational topology structure engineering and nitrogen moiety regulation.
中文翻译:
用于增强氧还原反应的单原子铁-氮二维 MOF 衍生的分级多孔碳催化剂
可持续能源的需求对于缓解能源短缺危机具有重要意义,其中金属空气电池和燃料电池中的氧还原反应(ORR)在高效能量转换中发挥着至关重要的作用。开发无贵金属、高效且稳定的 ORR 电催化剂是非常可取的,但仍然是一项重大挑战。在此,我们报告了一种原子分散的 Fe 和 N 共掺杂的分级多孔碳 (Fe-SA/HPC) 催化剂,该催化剂源自二维叶状 ZIF-L,具有卓越的 ORR 活性。Fe-SA/HPC催化剂得益于FeN x 的分级多孔结构和丰富的 高分散活性位点,具有半波电位(E 1/2) 与 0.1 M KOH 电解液中的可逆氢电极 (RHE) 相比为 0.91 V。在旋转圆盘电极 (RDE) 测试中负载0.382 mg cm -2催化剂的电流密度在 0.8 V 时可以达到 24.65 mA cm -2,几乎是商业 20 wt% Pt/C 的两倍。密度泛函理论计算表明,缺陷和石墨氮的共同调节可以优化活性 位点的局部电子再分布,并 赋予它们对 ORR 的较低自由能垒。 该工作通过合理的拓扑结构工程和氮基团调控,为开发高活性原子金属催化剂提供了一定的启示。