Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Incorporating Boron into Niobic Acid Nanosheets Enables Generation of Multiple Reactive Oxygen Species for Superior Antibacterial Action
Small ( IF 13.0 ) Pub Date : 2022-03-24 , DOI: 10.1002/smll.202107333 Bei Ran 1 , Lei Ran 1 , Jungang Hou 1 , Xiaojun Peng 1, 2
Small ( IF 13.0 ) Pub Date : 2022-03-24 , DOI: 10.1002/smll.202107333 Bei Ran 1 , Lei Ran 1 , Jungang Hou 1 , Xiaojun Peng 1, 2
Affiliation
Photocatalytic therapy is an alternative antibacterial pathway but most photocatalysts are limited by light absorption, charge transfer and insufficient production of reactive oxygen species (ROS). Herein, the authors utilize boron doped niobic acid nanosheets (B-HNbO3 NSs) as a superior photocatalytic antibacterial platform. The experimental results and density functional theory (DFT) confirm that superior photocatalytic therapy activity is mainly due to boron doping, which not only promotes the generation and separation of electrons and holes, but also enhances the adsorption of water and oxygen molecules on B-HNbO3 NSs. Consequently, multiple ROS including hydroxyl radicals (•OH), superoxide radicals (•O2−), and singlet oxygen (1O2) are generated under light irradiation, resulting in outstanding bacterial killing ability of B-HNbO3 NSs. Besides, oxygen is produced during the therapy process, thus alleviating the inflammatory response caused by hypoxia. Furthermore, molecular dynamics (MD) simulations verify that the nanosheet structure makes it possess strong electrostatic attraction for bacterial cell membranes, leading to physical insertion and damage to bacterial cells. Therefore, bactericidal rates for four types of bacteria are all more than 99%, proving its excellent and broad-spectrum antibacterial capacity. Moreover, B-HNbO3 NSs could be applied to treat biofilm-coated medical devices in vivo, suggesting its possibility in practical application.
中文翻译:
将硼掺入铌酸纳米片中,可产生多种活性氧,具有出色的抗菌作用
光催化疗法是一种替代的抗菌途径,但大多数光催化剂受到光吸收、电荷转移和活性氧 (ROS) 产生不足的限制。在此,作者利用硼掺杂的铌酸纳米片(B-HNbO 3 NSs)作为优异的光催化抗菌平台。实验结果和密度泛函理论(DFT)证实,优异的光催化治疗活性主要归功于硼的掺杂,它不仅促进了电子和空穴的产生和分离,而且增强了水分子和氧分子在 B-HNbO 上的吸附。3个NS。因此,包括羟基自由基(•OH)、超氧自由基(•O 2 -)和单线态氧(1O 2 ) 在光照射下产生,导致B-HNbO 3 NSs具有出色的细菌杀灭能力。此外,在治疗过程中会产生氧气,从而减轻因缺氧引起的炎症反应。此外,分子动力学(MD)模拟验证了纳米片结构使其对细菌细胞膜具有很强的静电吸引力,从而导致细菌细胞的物理插入和损伤。因此,四种细菌的杀菌率均在99%以上,证明了其优良的广谱抗菌能力。此外,B-HNbO 3 NSs 可用于治疗体内生物膜涂层医疗器械,表明其在实际应用中的可能性。
更新日期:2022-03-24
中文翻译:
将硼掺入铌酸纳米片中,可产生多种活性氧,具有出色的抗菌作用
光催化疗法是一种替代的抗菌途径,但大多数光催化剂受到光吸收、电荷转移和活性氧 (ROS) 产生不足的限制。在此,作者利用硼掺杂的铌酸纳米片(B-HNbO 3 NSs)作为优异的光催化抗菌平台。实验结果和密度泛函理论(DFT)证实,优异的光催化治疗活性主要归功于硼的掺杂,它不仅促进了电子和空穴的产生和分离,而且增强了水分子和氧分子在 B-HNbO 上的吸附。3个NS。因此,包括羟基自由基(•OH)、超氧自由基(•O 2 -)和单线态氧(1O 2 ) 在光照射下产生,导致B-HNbO 3 NSs具有出色的细菌杀灭能力。此外,在治疗过程中会产生氧气,从而减轻因缺氧引起的炎症反应。此外,分子动力学(MD)模拟验证了纳米片结构使其对细菌细胞膜具有很强的静电吸引力,从而导致细菌细胞的物理插入和损伤。因此,四种细菌的杀菌率均在99%以上,证明了其优良的广谱抗菌能力。此外,B-HNbO 3 NSs 可用于治疗体内生物膜涂层医疗器械,表明其在实际应用中的可能性。