Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Sticking Together: Injectable Granular Hydrogels with Increased Functionality via Dynamic Covalent Inter-Particle Crosslinking
Small ( IF 13.0 ) Pub Date : 2022-03-22 , DOI: 10.1002/smll.202201115
Victoria G Muir 1 , Taimoor H Qazi 1 , Shoshana Weintraub 1 , Bryan O Torres Maldonado 2 , Paulo E Arratia 2 , Jason A Burdick 1, 3, 4
Small ( IF 13.0 ) Pub Date : 2022-03-22 , DOI: 10.1002/smll.202201115
Victoria G Muir 1 , Taimoor H Qazi 1 , Shoshana Weintraub 1 , Bryan O Torres Maldonado 2 , Paulo E Arratia 2 , Jason A Burdick 1, 3, 4
Affiliation
![]() |
Granular hydrogels are an exciting class of microporous and injectable biomaterials that are being explored for many biomedical applications, including regenerative medicine, 3D printing, and drug delivery. Granular hydrogels often possess low mechanical moduli and lack structural integrity due to weak physical interactions between microgels. This has been addressed through covalent inter-particle crosslinking; however, covalent crosslinking often occurs through temporal enzymatic methods or photoinitiated reactions, which may limit injectability and material processing. To address this, a hyaluronic acid (HA) granular hydrogel is developed with dynamic covalent (hydrazone) inter-particle crosslinks. Extrusion fragmentation is used to fabricate microgels from photocrosslinkable norbornene-modified HA, additionally modified with either aldehyde or hydrazide groups. Aldehyde and hydrazide-containing microgels are mixed and jammed to form adhesive granular hydrogels. These granular hydrogels possess enhanced mechanical integrity and shape stability over controls due to the covalent inter-particle bonds, while maintaining injectability due to the dynamic hydrazone bonds. The adhesive granular hydrogels are applied to 3D printing, which allows the printing of structures that are stable without any further post-processing. Additionally, the authors demonstrate that adhesive granular hydrogels allow for cell invasion in vitro. Overall, this work demonstrates the use of dynamic covalent inter-particle crosslinking to enhance injectable granular hydrogels.
中文翻译:
粘在一起:通过动态共价颗粒间交联增强功能的可注射颗粒水凝胶
颗粒水凝胶是一类令人兴奋的微孔可注射生物材料,正在探索用于许多生物医学应用,包括再生医学、3D 打印和药物输送。由于微凝胶之间的物理相互作用较弱,颗粒水凝胶通常具有较低的机械模量并且缺乏结构完整性。这个问题已经通过共价颗粒间交联得到解决;然而,共价交联通常通过时间酶法或光引发反应发生,这可能会限制可注射性和材料加工。为了解决这个问题,开发了一种具有动态共价(腙)颗粒间交联的透明质酸(HA)颗粒水凝胶。挤出断裂用于从可光交联的降冰片烯改性 HA 制造微凝胶,另外还用醛基或酰肼基团进行改性。将含有醛和酰肼的微凝胶混合并堵塞,形成具有粘性的粒状水凝胶。由于颗粒间的共价键,这些颗粒状水凝胶与对照相比具有增强的机械完整性和形状稳定性,同时由于动态腙键而保持可注射性。粘合颗粒水凝胶应用于3D打印,无需任何进一步的后处理即可打印稳定的结构。此外,作者证明粘合颗粒水凝胶允许细胞在体外侵袭。总的来说,这项工作展示了使用动态共价颗粒间交联来增强可注射颗粒水凝胶。
更新日期:2022-03-22
中文翻译:

粘在一起:通过动态共价颗粒间交联增强功能的可注射颗粒水凝胶
颗粒水凝胶是一类令人兴奋的微孔可注射生物材料,正在探索用于许多生物医学应用,包括再生医学、3D 打印和药物输送。由于微凝胶之间的物理相互作用较弱,颗粒水凝胶通常具有较低的机械模量并且缺乏结构完整性。这个问题已经通过共价颗粒间交联得到解决;然而,共价交联通常通过时间酶法或光引发反应发生,这可能会限制可注射性和材料加工。为了解决这个问题,开发了一种具有动态共价(腙)颗粒间交联的透明质酸(HA)颗粒水凝胶。挤出断裂用于从可光交联的降冰片烯改性 HA 制造微凝胶,另外还用醛基或酰肼基团进行改性。将含有醛和酰肼的微凝胶混合并堵塞,形成具有粘性的粒状水凝胶。由于颗粒间的共价键,这些颗粒状水凝胶与对照相比具有增强的机械完整性和形状稳定性,同时由于动态腙键而保持可注射性。粘合颗粒水凝胶应用于3D打印,无需任何进一步的后处理即可打印稳定的结构。此外,作者证明粘合颗粒水凝胶允许细胞在体外侵袭。总的来说,这项工作展示了使用动态共价颗粒间交联来增强可注射颗粒水凝胶。