当前位置:
X-MOL 学术
›
Org. Process Res. Dev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Recent Advances in Enzyme Immobilization Utilizing Nanotechnology for Biocatalysis
Organic Process Research & Development ( IF 3.1 ) Pub Date : 2022-03-17 , DOI: 10.1021/acs.oprd.1c00404 Kotchakorn T.sriwong 1 , Tomoko Matsuda 1
Organic Process Research & Development ( IF 3.1 ) Pub Date : 2022-03-17 , DOI: 10.1021/acs.oprd.1c00404 Kotchakorn T.sriwong 1 , Tomoko Matsuda 1
Affiliation
Enzyme immobilization has been extensively employed in research and industry to improve enzyme stability and allow enzyme recycling. Broad ranges of chemicals and support materials have been utilized for enzyme immobilization. Recent breakthroughs in nanotechnology and materials science have influenced enzyme immobilization technology. Novel approaches for enzyme immobilization have enabled us to access more benefits, for example, excellent activity and stability, cost effectiveness, and the establishment of continuous flow processes. Herewith, this review provides an update on the enzyme immobilization strategies that have been attracting expanding interest in biocatalysis. Organic–inorganic nanocrystal formation, metal–organic frameworks, enzyme immobilization on graphene-based nanomaterials, and enzyme immobilization on functionalized solid surfaces are discussed in detail.
中文翻译:
利用纳米技术进行生物催化的酶固定化的最新进展
酶固定化已广泛应用于研究和工业中以提高酶稳定性并允许酶循环利用。广泛的化学品和支持材料已用于酶固定。纳米技术和材料科学的最新突破影响了酶固定化技术。酶固定化的新方法使我们能够获得更多好处,例如,出色的活性和稳定性、成本效益以及连续流动过程的建立。因此,这篇综述提供了关于酶固定化策略的最新信息,这些策略已经引起了人们对生物催化的日益广泛的兴趣。有机-无机纳米晶体的形成,金属-有机框架,石墨烯基纳米材料上的酶固定化,
更新日期:2022-03-17
中文翻译:
利用纳米技术进行生物催化的酶固定化的最新进展
酶固定化已广泛应用于研究和工业中以提高酶稳定性并允许酶循环利用。广泛的化学品和支持材料已用于酶固定。纳米技术和材料科学的最新突破影响了酶固定化技术。酶固定化的新方法使我们能够获得更多好处,例如,出色的活性和稳定性、成本效益以及连续流动过程的建立。因此,这篇综述提供了关于酶固定化策略的最新信息,这些策略已经引起了人们对生物催化的日益广泛的兴趣。有机-无机纳米晶体的形成,金属-有机框架,石墨烯基纳米材料上的酶固定化,