当前位置: X-MOL 学术Curr. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bacterial Arsenic Metabolism and Its Role in Arsenic Bioremediation
Current Microbiology ( IF 2.3 ) Pub Date : 2022-03-15 , DOI: 10.1007/s00284-022-02810-y
Ashutosh Kabiraj 1 , Raju Biswas 1 , Urmi Halder 1 , Rajib Bandopadhyay 1
Affiliation  

Arsenic contaminations, often adversely influencing the living organisms, including plants, animals, and the microbial communities, are of grave apprehension. Many physical, chemical, and biological techniques are now being explored to minimize the adverse affects of arsenic toxicity. Bioremediation of arsenic species using arsenic loving bacteria has drawn much attention. Arsenate and arsenite are mostly uptaken by bacteria through aquaglycoporins and phosphate transporters. After entering arsenic inside bacterial cell arsenic get metabolized (e.g., reduction, oxidation, methylation, etc.) into different forms. Arsenite is sequentially methylated into monomethyl arsenic acid (MMA) and dimethyl arsenic acid (DMA), followed by a transformation of less toxic, volatile trimethyl arsenic acid (TMA). Passive remediation techniques, including adsorption, biomineralization, bioaccumulation, bioleaching, and so on are exploited by bacteria. Rhizospheric bacterial association with some specific plants enhances phytoextraction process. Arsenic-resistant rhizospheric bacteria have immense role in enhancement of crop plant growth and development, but their applications are not well studied till date. Emerging techniques like phytosuction separation (PS-S) have a promising future, but still light to be focused on these techniques. Plant-associated bioremediation processes like phytoextraction and phytosuction separation (PS-S) techniques might be modified by treating with potent bacteria for furtherance.

Graphical Abstract



中文翻译:

细菌砷代谢及其在砷生物修复中的作用

砷污染通常会对包括植物、动物和微生物群落在内的生物体产生不利影响,令人严重担忧。现在正在探索许多物理、化学和生物技术,以尽量减少砷毒性的不利影响。使用嗜砷细菌对砷物种进行生物修复引起了广泛关注。砷酸盐和亚砷酸盐主要通过水糖孔蛋白和磷酸盐转运蛋白被细菌吸收。砷进入细菌细胞内后,被代谢(如还原、氧化、甲基化等)成不同的形式。亚砷酸盐依次甲基化为单甲基砷酸 (MMA) 和二甲基砷酸 (DMA),然后转化为毒性较小的挥发性三甲基砷酸 (TMA)。被动修复技术,包括吸附,生物矿化、生物积累、生物浸出等被细菌利用。根际细菌与某些特定植物的结合增强了植物提取过程。抗砷根际细菌在促进农作物生长发育方面发挥着巨大作用,但迄今为止对其应用的研究还不够深入。植物抽吸分离 (PS-S) 等新兴技术具有广阔的前景,但仍不能专注于这些技术。与植物相关的生物修复过程,如植物提取和植物抽吸分离 (PS-S) 技术,可以通过使用强效细菌进行处理来改进。抗砷根际细菌在促进农作物生长发育方面发挥着巨大作用,但迄今为止对其应用的研究还不够深入。植物抽吸分离 (PS-S) 等新兴技术具有广阔的前景,但仍不能专注于这些技术。与植物相关的生物修复过程,如植物提取和植物抽吸分离 (PS-S) 技术,可以通过使用强效细菌进行处理来改进。抗砷根际细菌在促进农作物生长发育方面发挥着巨大作用,但迄今为止对其应用的研究还不够深入。植物抽吸分离 (PS-S) 等新兴技术具有广阔的前景,但仍不能专注于这些技术。与植物相关的生物修复过程,如植物提取和植物抽吸分离 (PS-S) 技术,可以通过使用强效细菌进行处理来改进。

图形概要

更新日期:2022-03-15
down
wechat
bug