湿化学途径合成尺寸和形状可调的金纳米结构的效率很大程度上取决于所使用的溶剂以及溶剂分子与其他物质(例如金离子)的相互作用。研究了有机溶剂N-甲基-2-吡咯烷酮 (NMP) 作为合适介质在环境条件下合成具有可调形貌的星状金纳米结构 (AuNS) 的能力。对纯 NMP 溶液中Au III Cl 4的紫外可见吸收光谱的时间依赖性分析说明了 NMP 作为同时络合剂和还原剂的作用。动力学研究表明,NMP 溶液中的 Au III Cl 4 –被还原为 Au I Cl 2 – ,无需使用其他还原剂、任何外部能源或溶剂预处理。这是因为 Au I物质在此溶液中保持稳定,除非聚(乙烯基吡咯烷酮)(PVP)催化其歧化。通过透射电子显微镜 (TEM) 进行的形态学研究表明,通过 PVP 在浓 NMP 溶液中高产率合成具有单晶尖峰的 AuNS。这项研究表明,种子作为另一种催化 Au I物种歧化的试剂的存在,使得在该介质中合成不同浓度的 PVP 的 AuNS 成为可能。系统地讨论了 PVP 浓度和种子存在在形成动力学、形态和光学特性中的作用。 通过这项研究取得的结果开发了一种简单、安全的方法,可以在与水混溶的有机极性溶剂中以高产率合成 AuNS,并具有可调节的形貌和光学性质。考虑到 NMP 具有溶解各种类型的聚合物和疏水配体的高性能,在这种溶剂中合成 AuNS 为制备具有令人着迷的光学性能的金基纳米材料打开了一扇实用且简单的方法。
"点击查看英文标题和摘要"
N-Methyl-2-pyrrolidone as a Reaction Medium for Gold(III)-Ion Reduction and Star-like Gold Nanostructure Formation
The efficiency of a wet chemical route to synthesize gold nanostructures with tunable size and shape significantly depends on the applied solvent and the interaction of solvent molecules with other species such as gold ions. The ability of the organic solvent N-methyl-2-pyrrolidone (NMP) as a suitable medium for application in star-like gold nanostructure (AuNS) synthesis with a tunable morphology at ambient conditions has been investigated. The time-dependent analysis of the UV–vis absorption spectra of AuIIICl4– in a pure NMP solution illustrates the role of NMP as simultaneous complexing and reducing agents. Kinetic studies indicate that AuIIICl4– in NMP solution is reduced to AuICl2–, with no need to use another reducing agent, any external energy sources, or solvent pretreatment. This is because AuI species stay stable in this solution unless poly(vinylpyrrolidone) (PVP) catalyzes their disproportionation. Morphological studies by transmission electron microscopy (TEM) specify the high-yield synthesis of AuNS with monocrystalline spikes in a concentrated NMP solution by PVP. This study illustrates that the presence of seeds, as another agent to catalyze the disproportionation of AuI species, makes it possible to synthesize AuNS in varying concentrations of PVP in this medium. The role of PVP concentration and the presence of seeds in the formation kinetics, morphology, and optical properties is systematically discussed. The results achieved through this study develop a straightforward and safe procedure for AuNS synthesis in high yield in a water-miscible organic polar solvent with tunable morphology and optical properties. Considering the high capability of NMP to dissolve various types of polymers and hydrophobic ligands, synthesizing AuNS in this solvent opens a window to a practical and easy way to fabricate gold-based nanomaterials with fascinating optical properties.