当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hydrated Orthorhombic/Hexagonal Mixed-Phase WO3 Core–Shell Nanoribbons for Hole-Mediated Photocatalysis
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2022-03-10 , DOI: 10.1021/acsanm.1c04267 Manju Kumari Jaiswal 1, 2 , Biswajit Choudhury 1, 2
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2022-03-10 , DOI: 10.1021/acsanm.1c04267 Manju Kumari Jaiswal 1, 2 , Biswajit Choudhury 1, 2
Affiliation
Herein, we report the hydrothermal fabrication of hydrated hexagonal (h)/orthorhombic (o) mixed-phase (h-WO3/o-WO3·H2O) core–shell nanoribbons for the photodegradation of methylene blue (MB) under UV, visible, and monochromatic light excitations. The mixed-phase core–shell shows 2–3 times higher photocatalytic activity than the monoclinic (m)-WO3 and h-WO3 crystalline phases. The intercalated water, trap states, and prolonged carrier lifetimes play significant roles in the photocatalytic enhancement of the hydrated mixed phase. These developed nanosystems are rich in oxygen vacancies and show photoabsorption extended up to the near-infrared (NIR) region. Electrochemical spectroscopy revealed a reduced charge-transfer resistance in the mixed-phase compared with other crystalline phases. The underlying mechanism shows that the superiority of the mixed-phase core–shell over other crystalline phases is because of three factors. First, efficient carrier separation at the core–shell and mixed-phase junction; second, intercalated water from the reaction medium and the o-WO3·H2O phase; and third, electron trapping sites. The oxygen defects trap the photogenerated electrons and leave free holes. The tunnel structure of the mixed phase provides intercalation and easy diffusion of water molecules. The intercalated water molecules readily interact with the mobile holes to form hydroxyl radicals for activated photocatalysis. All of these factors contribute to the improved photocatalytic performance of the mixed-phase WO3 nanoribbons.
中文翻译:
用于空穴介导光催化的水合斜方/六方混合相 WO3 核壳纳米带
在此,我们报告了水合六方(h)/正交(o)混合相(h-WO 3 /o-WO 3 ·H 2 O)核壳纳米带的水热制备,用于光降解亚甲基蓝(MB)。紫外、可见光和单色光激发。混合相核壳的光催化活性比单斜 (m)-WO 3和 h-WO 3高 2-3 倍结晶相。插层水、陷阱态和延长的载流子寿命在水合混合相的光催化增强中起着重要作用。这些开发的纳米系统富含氧空位,并显示出扩展到近红外 (NIR) 区域的光吸收。电化学光谱显示与其他结晶相相比,混合相中的电荷转移电阻降低。潜在的机制表明,混合相核壳相对于其他晶相的优势在于三个因素。首先,核壳和混合相结处的有效载流子分离;第二,来自反应介质的插层水和o-WO 3 ·H 2O相;第三,电子俘获位点。氧缺陷捕获光生电子并留下自由空穴。混合相的隧道结构提供了水分子的嵌入和易扩散。嵌入的水分子很容易与移动的空穴相互作用,形成羟基自由基,用于活化光催化。所有这些因素都有助于提高混合相WO 3纳米带的光催化性能。
更新日期:2022-03-10
中文翻译:
用于空穴介导光催化的水合斜方/六方混合相 WO3 核壳纳米带
在此,我们报告了水合六方(h)/正交(o)混合相(h-WO 3 /o-WO 3 ·H 2 O)核壳纳米带的水热制备,用于光降解亚甲基蓝(MB)。紫外、可见光和单色光激发。混合相核壳的光催化活性比单斜 (m)-WO 3和 h-WO 3高 2-3 倍结晶相。插层水、陷阱态和延长的载流子寿命在水合混合相的光催化增强中起着重要作用。这些开发的纳米系统富含氧空位,并显示出扩展到近红外 (NIR) 区域的光吸收。电化学光谱显示与其他结晶相相比,混合相中的电荷转移电阻降低。潜在的机制表明,混合相核壳相对于其他晶相的优势在于三个因素。首先,核壳和混合相结处的有效载流子分离;第二,来自反应介质的插层水和o-WO 3 ·H 2O相;第三,电子俘获位点。氧缺陷捕获光生电子并留下自由空穴。混合相的隧道结构提供了水分子的嵌入和易扩散。嵌入的水分子很容易与移动的空穴相互作用,形成羟基自由基,用于活化光催化。所有这些因素都有助于提高混合相WO 3纳米带的光催化性能。