Annual Review of Condensed Matter Physics ( IF 14.3 ) Pub Date : 2022-03-10 , DOI: 10.1146/annurev-conmatphys-040220-045516 Nicholas B. Rego 1 , Amish J. Patel 1
The aversion of hydrophobic solutes for water drives diverse interactions and assemblies across materials science, biology, and beyond. Here, we review the theoretical, computational, and experimental developments that underpin a contemporary understanding of hydrophobic effects. We discuss how an understanding of density fluctuations in bulk water can shed light on the fundamental differences in the hydration of molecular and macroscopic solutes; these differences, in turn, explain why hydrophobic interactions become stronger upon increasing temperature. We also illustrate the sensitive dependence of surface hydrophobicity on the chemical and topographical patterns the surface displays, which makes the use of approximate approaches for estimating hydrophobicity particularly challenging. Importantly, the hydrophobicity of complex surfaces, such as those of proteins, which display nanoscale heterogeneity, can nevertheless be characterized using interfacial water density fluctuations; such a characterization also informs protein regions that mediate their interactions. Finally, we build upon an understanding of hydrophobic hydration and the ability to characterize hydrophobicity to inform the context-dependent thermodynamic forces that drive hydrophobic interactions and the desolvation barriers that impede them.
中文翻译:
了解疏水效应:水密度波动的见解
对水的疏水性溶质的厌恶推动了材料科学、生物学及其他领域的多种相互作用和组装。在这里,我们回顾了支撑当代对疏水效应理解的理论、计算和实验发展。我们讨论了对散装水中密度波动的理解如何揭示分子和宏观溶质水合的根本差异;反过来,这些差异解释了为什么疏水相互作用会随着温度的升高而变得更强。我们还说明了表面疏水性对表面显示的化学和地形图案的敏感依赖性,这使得使用近似方法来估计疏水性特别具有挑战性。重要的是,复杂表面的疏水性,例如那些表现出纳米级异质性的蛋白质,仍然可以使用界面水密度波动来表征;这种特征也为介导它们相互作用的蛋白质区域提供了信息。最后,我们建立在对疏水水合的理解和表征疏水性的能力的基础上,以告知驱动疏水相互作用的上下文相关的热力学力和阻碍它们的去溶剂化障碍。