当前位置:
X-MOL 学术
›
Energy Environ. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Three-Dimensional N-Doped Carbon Nanotube/Graphene Composite Aerogel Anode to Develop High-Power Microbial Fuel Cell
Energy & Environmental Materials ( IF 13.0 ) Pub Date : 2022-02-25 , DOI: 10.1002/eem2.12373 Shixuan Jin 1 , Yiyu Feng 1 , Jichao Jia 2 , Fulai Zhao 1 , Zijie Wu 1 , Peng Long 1 , Feng Li 2 , Huitao Yu 1 , Chi Yang 2 , Qijing Liu 2 , Baocai Zhang 2 , Hao Song 2 , Wei Feng 1
Energy & Environmental Materials ( IF 13.0 ) Pub Date : 2022-02-25 , DOI: 10.1002/eem2.12373 Shixuan Jin 1 , Yiyu Feng 1 , Jichao Jia 2 , Fulai Zhao 1 , Zijie Wu 1 , Peng Long 1 , Feng Li 2 , Huitao Yu 1 , Chi Yang 2 , Qijing Liu 2 , Baocai Zhang 2 , Hao Song 2 , Wei Feng 1
Affiliation
Optimizing the structure of electrode materials is one of the most effective strategies for designing high-power microbial fuel cells (MFCs). However, electrode materials currently suffer from a series of shortcomings that limit the output of MFCs, such as high intrinsic resistance, poor electrolyte wettability, and low microbial load capacity. Here, a three-dimensional (3D) nitrogen-doped multiwalled carbon nanotube/graphene (N-MWCNT/GA) composite aerogel is synthesized as the anode for MFCs. Comparing nitrogen-doped GA, MWCNT/GA, and N-MWCNT/GA, the macroporous hydrophilic N-MWCNT/GA electrode with an average pore size of 4.24 µm enables high-density loading of the microbes and facilitates extracellular electron transfer with low intrinsic resistance. Consequently, the hydrophilic surface of N-MWCNT can generate high charge mobility, enabling a high-power output performance of the MFC. In consequence, the MFC system based on N-MWCNT/GA anode exhibits a peak power density and output voltage of 2977.8 mW m−2 and 0.654 V, which are 1.83 times and 16.3% higher than those obtained with MWCNT/GA, respectively. These results demonstrate that 3D N-MWCNT/GA anodes can be developed for high-power MFCs in different environments by optimizing their chemical and microstructures.
中文翻译:
三维N掺杂碳纳米管/石墨烯复合气凝胶阳极开发高功率微生物燃料电池
优化电极材料的结构是设计高功率微生物燃料电池(MFC)最有效的策略之一。然而,目前电极材料存在固有电阻高、电解质润湿性差、微生物负载能力低等一系列缺点,限制了MFCs的产量。在这里,合成了三维 (3D) 氮掺杂多壁碳纳米管/石墨烯 (N-MWCNT/GA) 复合气凝胶作为 MFC 的阳极。比较氮掺杂 GA、MWCNT/GA 和 N-MWCNT/GA,平均孔径为 4.24 µm 的大孔亲水性 N-MWCNT/GA 电极可实现微生物的高密度负载,并以低本征促进细胞外电子转移反抗。因此,N-MWCNT 的亲水表面可以产生高电荷迁移率,实现MFC的高功率输出性能。因此,基于 N-MWCNT/GA 阳极的 MFC 系统表现出峰值功率密度和输出电压为 2977.8 mW m-2和 0.654 V,分别是 MWCNT/GA 的 1.83 倍和 16.3%。这些结果表明,通过优化其化学和微观结构,可以为不同环境中的高功率 MFC 开发 3D N-MWCNT/GA 阳极。
更新日期:2022-02-25
中文翻译:
三维N掺杂碳纳米管/石墨烯复合气凝胶阳极开发高功率微生物燃料电池
优化电极材料的结构是设计高功率微生物燃料电池(MFC)最有效的策略之一。然而,目前电极材料存在固有电阻高、电解质润湿性差、微生物负载能力低等一系列缺点,限制了MFCs的产量。在这里,合成了三维 (3D) 氮掺杂多壁碳纳米管/石墨烯 (N-MWCNT/GA) 复合气凝胶作为 MFC 的阳极。比较氮掺杂 GA、MWCNT/GA 和 N-MWCNT/GA,平均孔径为 4.24 µm 的大孔亲水性 N-MWCNT/GA 电极可实现微生物的高密度负载,并以低本征促进细胞外电子转移反抗。因此,N-MWCNT 的亲水表面可以产生高电荷迁移率,实现MFC的高功率输出性能。因此,基于 N-MWCNT/GA 阳极的 MFC 系统表现出峰值功率密度和输出电压为 2977.8 mW m-2和 0.654 V,分别是 MWCNT/GA 的 1.83 倍和 16.3%。这些结果表明,通过优化其化学和微观结构,可以为不同环境中的高功率 MFC 开发 3D N-MWCNT/GA 阳极。