Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ferroelectric Engineered Electrode-Composite Polymer Electrolyte Interfaces for All-Solid-State Sodium Metal Battery
Advanced Science ( IF 14.3 ) Pub Date : 2022-03-06 , DOI: 10.1002/advs.202105849 Yumei Wang, Zhongting Wang, Feng Zheng, Jianguo Sun, Jin An Sam Oh, Tian Wu, Gongxuan Chen, Qing Huang, Masashi Kotobuki, Kaiyang Zeng, Li Lu
Advanced Science ( IF 14.3 ) Pub Date : 2022-03-06 , DOI: 10.1002/advs.202105849 Yumei Wang, Zhongting Wang, Feng Zheng, Jianguo Sun, Jin An Sam Oh, Tian Wu, Gongxuan Chen, Qing Huang, Masashi Kotobuki, Kaiyang Zeng, Li Lu
To enhance the compatibility between the polymer-based electrolytes and electrodes, and promote the interfacial ion conduction, a novel approach to engineer the interfaces between all-solid-state composite polymer electrolyte and electrodes using thin layers of ferroelectrics is introduced. The well-designed and ferroelectric-engineered composite polymer electrolyte demonstrates an attractive ionic conductivity of 7.9 × 10–5 S cm–1 at room temperature. Furthermore, the ferroelectric engineering is able to effectively suppress the growth of solid electrolyte interphase (SEI) at the interface between polymer electrolytes and Na metal electrodes, and it can also enhance the ion diffusion across the electrolyte-ferroelectric-cathode/anode interfaces. Notably, an extraordinarily high discharge capacity of 160.3 mAh g–1, with 97.4% in retention, is achieved in the ferroelectric-engineered all-solid-state Na metal cell after 165 cycles at room temperature. Moreover, outstanding stability is demonstrated that a high discharge capacity retention of 86.0% is achieved over 180 full charge/discharge cycles, even though the cell has been aged for 2 months. This work provides new insights in enhancing the long-cyclability and stability of solid-state rechargeable batteries.
中文翻译:
用于全固态钠金属电池的铁电工程电极复合聚合物电解质界面
为了增强聚合物基电解质和电极之间的相容性,促进界面离子传导,介绍了一种利用铁电体薄层设计全固态复合聚合物电解质和电极之间界面的新方法。精心设计和铁电工程的复合聚合物电解质表现出具有吸引力的 7.9 × 10 –5 S cm –1离子电导率在室温下。此外,铁电工程能够有效抑制固体电解质界面(SEI)在聚合物电解质和金属钠电极之间的界面生长,还可以增强离子在电解质-铁电-阴极/阳极界面的扩散。值得注意的是,160.3 mAh g –1的超高放电容量在室温下循环 165 次后,铁电工程全固态钠金属电池的保留率为 97.4%。此外,出色的稳定性表明,即使电池已老化 2 个月,在 180 个完整的充电/放电循环中仍可实现 86.0% 的高放电容量保持率。这项工作为提高固态可充电电池的长循环性和稳定性提供了新的见解。
更新日期:2022-03-06
中文翻译:
用于全固态钠金属电池的铁电工程电极复合聚合物电解质界面
为了增强聚合物基电解质和电极之间的相容性,促进界面离子传导,介绍了一种利用铁电体薄层设计全固态复合聚合物电解质和电极之间界面的新方法。精心设计和铁电工程的复合聚合物电解质表现出具有吸引力的 7.9 × 10 –5 S cm –1离子电导率在室温下。此外,铁电工程能够有效抑制固体电解质界面(SEI)在聚合物电解质和金属钠电极之间的界面生长,还可以增强离子在电解质-铁电-阴极/阳极界面的扩散。值得注意的是,160.3 mAh g –1的超高放电容量在室温下循环 165 次后,铁电工程全固态钠金属电池的保留率为 97.4%。此外,出色的稳定性表明,即使电池已老化 2 个月,在 180 个完整的充电/放电循环中仍可实现 86.0% 的高放电容量保持率。这项工作为提高固态可充电电池的长循环性和稳定性提供了新的见解。