当前位置:
X-MOL 学术
›
Int. J. Energy Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Water transport in polymer electrolyte membrane fuel cell: Degradation effect of gas diffusion layer
International Journal of Energy Research ( IF 4.3 ) Pub Date : 2022-03-02 , DOI: 10.1002/er.7782 Jooyoung Park 1 , Hwanyeong Oh 2 , Hanwook Park 3 , Jong Woon Moon 4 , Sang Joon Lee 1 , Sung Yong Jung 4
International Journal of Energy Research ( IF 4.3 ) Pub Date : 2022-03-02 , DOI: 10.1002/er.7782 Jooyoung Park 1 , Hwanyeong Oh 2 , Hanwook Park 3 , Jong Woon Moon 4 , Sang Joon Lee 1 , Sung Yong Jung 4
Affiliation
Proton exchange membrane fuel cells (PEMFCs) have garnered considerable attention for transportation applications owing to their high energy efficiency. Understanding their long-term durability is essential because the performance deteriorates over time. The water transport characteristics of the gas diffusion layer (GDL), aged by inserting hydrogen peroxide solutions, are investigated. The dynamics of the water meniscus inside the GDL is visualized via synchrotron phase-contrast radiography, and the temporal variations in the pressure are measured simultaneously. The pressure and time at breakthrough (BT) when the water firstly emerged from GDL were compared. The degraded GDL exhibits a larger BT pressure and requires a longer time to achieve the first water BT than the pristine GDL. Unlike the pristine GDL showing snap-off patterns, water continuously penetrates the degraded GDL representing the piston-like movement, and repetitive increases and decreases in the pressure are not observed. This difference represents the dominant transport mechanisms. GDL degradation induces the loss of polytetrafluoroethylene (PTFE), which is generally used for the effective transport of fuel and water. The PTFE loss reduces the hydrophobicity and pore size, which can increase the actual path length of the water flow. The increase in the BT time and BT pressure, as well as continuous transport, can disrupt fuel supply to chemical reaction sites, thereby deteriorating the PEMFC performance.
中文翻译:
聚合物电解质膜燃料电池中的水传输:气体扩散层的降解效应
质子交换膜燃料电池(PEMFCs)由于其高能效而在交通运输应用中获得了相当多的关注。了解它们的长期耐用性至关重要,因为性能会随着时间的推移而恶化。研究了通过插入过氧化氢溶液老化的气体扩散层(GDL)的水传输特性。GDL 内水弯月面的动态通过同步加速器相位对比射线照相可视化,同时测量压力的时间变化。比较了水从GDL中首次出现时的压力和突破时间(BT)。与原始 GDL 相比,降解的 GDL 表现出更大的 BT 压力并且需要更长的时间来实现第一个水 BT。与原始 GDL 显示折断模式不同,水连续渗透代表活塞式运动的退化 GDL,并且没有观察到压力的重复增加和减少。这种差异代表了主要的传输机制。GDL 降解会导致聚四氟乙烯 (PTFE) 的损失,聚四氟乙烯 (PTFE) 通常用于燃料和水的有效运输。PTFE损失降低了疏水性和孔径,这可以增加水流的实际路径长度。BT 时间和 BT 压力的增加以及持续运输会破坏化学反应位点的燃料供应,从而降低 PEMFC 的性能。GDL 降解会导致聚四氟乙烯 (PTFE) 的损失,聚四氟乙烯 (PTFE) 通常用于燃料和水的有效运输。PTFE损失降低了疏水性和孔径,这可以增加水流的实际路径长度。BT 时间和 BT 压力的增加以及持续运输会破坏化学反应位点的燃料供应,从而降低 PEMFC 的性能。GDL 降解会导致聚四氟乙烯 (PTFE) 的损失,聚四氟乙烯 (PTFE) 通常用于燃料和水的有效运输。PTFE损失降低了疏水性和孔径,这可以增加水流的实际路径长度。BT 时间和 BT 压力的增加以及持续运输会破坏化学反应位点的燃料供应,从而降低 PEMFC 的性能。
更新日期:2022-03-02
中文翻译:
聚合物电解质膜燃料电池中的水传输:气体扩散层的降解效应
质子交换膜燃料电池(PEMFCs)由于其高能效而在交通运输应用中获得了相当多的关注。了解它们的长期耐用性至关重要,因为性能会随着时间的推移而恶化。研究了通过插入过氧化氢溶液老化的气体扩散层(GDL)的水传输特性。GDL 内水弯月面的动态通过同步加速器相位对比射线照相可视化,同时测量压力的时间变化。比较了水从GDL中首次出现时的压力和突破时间(BT)。与原始 GDL 相比,降解的 GDL 表现出更大的 BT 压力并且需要更长的时间来实现第一个水 BT。与原始 GDL 显示折断模式不同,水连续渗透代表活塞式运动的退化 GDL,并且没有观察到压力的重复增加和减少。这种差异代表了主要的传输机制。GDL 降解会导致聚四氟乙烯 (PTFE) 的损失,聚四氟乙烯 (PTFE) 通常用于燃料和水的有效运输。PTFE损失降低了疏水性和孔径,这可以增加水流的实际路径长度。BT 时间和 BT 压力的增加以及持续运输会破坏化学反应位点的燃料供应,从而降低 PEMFC 的性能。GDL 降解会导致聚四氟乙烯 (PTFE) 的损失,聚四氟乙烯 (PTFE) 通常用于燃料和水的有效运输。PTFE损失降低了疏水性和孔径,这可以增加水流的实际路径长度。BT 时间和 BT 压力的增加以及持续运输会破坏化学反应位点的燃料供应,从而降低 PEMFC 的性能。GDL 降解会导致聚四氟乙烯 (PTFE) 的损失,聚四氟乙烯 (PTFE) 通常用于燃料和水的有效运输。PTFE损失降低了疏水性和孔径,这可以增加水流的实际路径长度。BT 时间和 BT 压力的增加以及持续运输会破坏化学反应位点的燃料供应,从而降低 PEMFC 的性能。