当前位置:
X-MOL 学术
›
Sustain. Energy Fuels
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Designed synthesis of a hierarchical MoSe2@WSe2 hybrid nanostructure as a bifunctional electrocatalyst for total water-splitting
Sustainable Energy & Fuels ( IF 5.0 ) Pub Date : 2022-03-03 , DOI: 10.1039/d1se01843d Rajeev Kumar Rai 1 , Bidushi Sarkar 1 , Ranit Ram 1 , Karuna Kar Nanda 1 , N. Ravishankar 1
Sustainable Energy & Fuels ( IF 5.0 ) Pub Date : 2022-03-03 , DOI: 10.1039/d1se01843d Rajeev Kumar Rai 1 , Bidushi Sarkar 1 , Ranit Ram 1 , Karuna Kar Nanda 1 , N. Ravishankar 1
Affiliation
Layered metal dichalcogenides (LMDs) and their heterostructures with different morphologies are next generation materials for sensing, electronics, optoelectronics, topological insulators and devices, and catalytic applications. In recent years, LMDs with more exposed electrochemically active sites have been explored as cost-effective alternatives for the water-splitting reaction. However, morphology engineering and heterostructure synthesis of LMDs through low-cost and high-yield methods are still challenging. Herein, we present a simple and facile wet-chemical method to synthesize few-layered MoSe2 and WSe2 nanoflowers with a large number of exposed edges. Temperature-controlled reactions reveal the faster synthesis of MoSe2 as compared to WSe2. Exploiting the faster kinetics of the synthesis of MoSe2, we have synthesized a hierarchical heterostructure of MoSe2@WSe2 through a one-step synthesis method. The as-synthesized nanostructures were used for the water-splitting reaction that involves the hydrogen evolution reaction (HER) at the cathode and the oxygen evolution reaction (OER) at the anode. The hierarchical nanostructure exhibits better electrocatalytic activity among the as-synthesized nanostructures. The hierarchical nanostructure requires an overpotential of 231 mV (HER) and 300 mV (OER) to achieve a current density of 10 mA cm−2. This study opens the door for wet-chemical synthesis of hierarchical heterostructures based on LMDs with enhanced properties.
中文翻译:
分层 MoSe2@WSe2 杂化纳米结构的设计合成作为全水分解的双功能电催化剂
层状金属二硫化物 (LMD) 及其具有不同形态的异质结构是用于传感、电子、光电子、拓扑绝缘体和器件以及催化应用的下一代材料。近年来,具有更多暴露的电化学活性位点的 LMD 已被探索为水分解反应的具有成本效益的替代品。然而,通过低成本和高产率的方法合成LMDs的形态工程和异质结构仍然具有挑战性。在此,我们提出了一种简单易行的湿化学方法来合成具有大量暴露边缘的少层 MoSe 2和 WSe 2纳米花。与WSe 2相比,温度控制反应表明MoSe 2 的合成速度更快. 利用更快的MoSe 2 合成动力学,我们通过一步合成方法合成了MoSe 2 @WSe 2的分级异质结构。合成后的纳米结构用于水分解反应,该反应涉及阴极的析氢反应(HER)和阳极的析氧反应(OER)。分级纳米结构在合成的纳米结构中表现出更好的电催化活性。分层纳米结构需要 231 mV (HER) 和 300 mV (OER) 的过电位来实现 10 mA cm -2的电流密度。这项研究为湿化学合成基于具有增强特性的 LMD 的分层异质结构打开了大门。
更新日期:2022-03-03
中文翻译:
分层 MoSe2@WSe2 杂化纳米结构的设计合成作为全水分解的双功能电催化剂
层状金属二硫化物 (LMD) 及其具有不同形态的异质结构是用于传感、电子、光电子、拓扑绝缘体和器件以及催化应用的下一代材料。近年来,具有更多暴露的电化学活性位点的 LMD 已被探索为水分解反应的具有成本效益的替代品。然而,通过低成本和高产率的方法合成LMDs的形态工程和异质结构仍然具有挑战性。在此,我们提出了一种简单易行的湿化学方法来合成具有大量暴露边缘的少层 MoSe 2和 WSe 2纳米花。与WSe 2相比,温度控制反应表明MoSe 2 的合成速度更快. 利用更快的MoSe 2 合成动力学,我们通过一步合成方法合成了MoSe 2 @WSe 2的分级异质结构。合成后的纳米结构用于水分解反应,该反应涉及阴极的析氢反应(HER)和阳极的析氧反应(OER)。分级纳米结构在合成的纳米结构中表现出更好的电催化活性。分层纳米结构需要 231 mV (HER) 和 300 mV (OER) 的过电位来实现 10 mA cm -2的电流密度。这项研究为湿化学合成基于具有增强特性的 LMD 的分层异质结构打开了大门。