当前位置:
X-MOL 学术
›
ACS Appl. Polym. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Poly(propylene fumarate)-Based Adhesives with a Transformable Adhesion Force for Suture-Free Fixation of Soft Tissue Wounds
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2022-03-02 , DOI: 10.1021/acsapm.1c01733 Xin Guan 1 , Ting Wei 1 , Jingting Cai 1, 2 , Jianlin Sun 1 , Sen Yu 1, 3 , Dagang Guo 1
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2022-03-02 , DOI: 10.1021/acsapm.1c01733 Xin Guan 1 , Ting Wei 1 , Jingting Cai 1, 2 , Jianlin Sun 1 , Sen Yu 1, 3 , Dagang Guo 1
Affiliation
The design of soft tissue adhesives with excellent adhesive performance has drawn much attention in biomedical applications for the suture-free fixation of soft tissue wounds. Poly(propylene fumarate) (PPF)-based materials exhibit excellent biocompatibility with nontoxic products and high mechanical strength and are widely used as bone repair materials. However, shortcomings, including low adhesive strength, low breathability, and poor hydrophobicity, as well as difficulty in detaching in vitro or degrading in vivo after wound tissue healing, limit the potential application of PPF-based materials in soft tissue adhesives. This study presented a biomimetic nucleobase-tackified strategy for designing PPF-based soft tissue adhesives, where adenine was diffusely distributed as a convex second phase in the PPF matrix and provided multipoint interactions with soft tissues. As a result, adenine increased both the lap shear strength by 200% (1.48 ± 0.10 MPa) and the adhesive strength (1.70 ± 0.08 MPa) by 45% in the early stage, and then with adenine degradation, the multipoint interactions disappeared and simultaneously achieved a removable adhesion function with tissue. Moreover, the formed microscale pores from the adenine degradation site also improved the maximum moisture vapor transmission rate by 238% and the hydrophilicity. This detachable adhesive strategy on PPF-based materials will significantly promote the next generation of soft tissue adhesives for biomedical applications.
中文翻译:
具有可变粘附力的聚富马酸丙二醇酯基粘合剂,用于软组织伤口的无缝合固定
具有优异粘合性能的软组织粘合剂的设计在用于软组织伤口的免缝合固定的生物医学应用中引起了广泛关注。聚富马酸丙二醇酯(PPF)基材料与无毒产品具有优异的生物相容性和高机械强度,被广泛用作骨修复材料。然而,PPF基材料的粘合强度低、透气性差、疏水性差,以及伤口组织愈合后难以体外分离或体内降解等缺点,限制了PPF基材料在软组织粘合剂中的潜在应用。本研究提出了一种仿生核碱基增粘策略,用于设计基于 PPF 的软组织粘合剂,其中腺嘌呤在 PPF 基质中作为凸第二相扩散分布,并提供与软组织的多点相互作用。结果,腺嘌呤在早期将搭接剪切强度提高了 200%(1.48 ± 0.10 MPa)和粘合强度(1.70 ± 0.08 MPa)提高了 45%,然后随着腺嘌呤降解,多点相互作用消失,同时实现了与组织的可去除粘连功能。此外,腺嘌呤降解位点形成的微孔还提高了最大湿气透过率238%和亲水性。这种基于 PPF 材料的可分离粘合剂策略将显着促进用于生物医学应用的下一代软组织粘合剂。10 MPa) 和早期粘合强度 (1.70 ± 0.08 MPa) 45%,然后随着腺嘌呤降解,多点相互作用消失,同时实现与组织的可去除粘合功能。此外,腺嘌呤降解位点形成的微孔还提高了最大湿气透过率238%和亲水性。这种基于 PPF 材料的可分离粘合剂策略将显着促进用于生物医学应用的下一代软组织粘合剂。10 MPa) 和早期粘合强度 (1.70 ± 0.08 MPa) 45%,然后随着腺嘌呤降解,多点相互作用消失,同时实现与组织的可去除粘合功能。此外,腺嘌呤降解位点形成的微孔还提高了最大湿气透过率238%和亲水性。这种基于 PPF 材料的可分离粘合剂策略将显着促进用于生物医学应用的下一代软组织粘合剂。从腺嘌呤降解位点形成的微孔也将最大水蒸气透过率提高了 238% 和亲水性。这种基于 PPF 材料的可分离粘合剂策略将显着促进用于生物医学应用的下一代软组织粘合剂。从腺嘌呤降解位点形成的微孔也将最大水蒸气透过率提高了 238% 和亲水性。这种基于 PPF 材料的可分离粘合剂策略将显着促进用于生物医学应用的下一代软组织粘合剂。
更新日期:2022-03-02
中文翻译:
具有可变粘附力的聚富马酸丙二醇酯基粘合剂,用于软组织伤口的无缝合固定
具有优异粘合性能的软组织粘合剂的设计在用于软组织伤口的免缝合固定的生物医学应用中引起了广泛关注。聚富马酸丙二醇酯(PPF)基材料与无毒产品具有优异的生物相容性和高机械强度,被广泛用作骨修复材料。然而,PPF基材料的粘合强度低、透气性差、疏水性差,以及伤口组织愈合后难以体外分离或体内降解等缺点,限制了PPF基材料在软组织粘合剂中的潜在应用。本研究提出了一种仿生核碱基增粘策略,用于设计基于 PPF 的软组织粘合剂,其中腺嘌呤在 PPF 基质中作为凸第二相扩散分布,并提供与软组织的多点相互作用。结果,腺嘌呤在早期将搭接剪切强度提高了 200%(1.48 ± 0.10 MPa)和粘合强度(1.70 ± 0.08 MPa)提高了 45%,然后随着腺嘌呤降解,多点相互作用消失,同时实现了与组织的可去除粘连功能。此外,腺嘌呤降解位点形成的微孔还提高了最大湿气透过率238%和亲水性。这种基于 PPF 材料的可分离粘合剂策略将显着促进用于生物医学应用的下一代软组织粘合剂。10 MPa) 和早期粘合强度 (1.70 ± 0.08 MPa) 45%,然后随着腺嘌呤降解,多点相互作用消失,同时实现与组织的可去除粘合功能。此外,腺嘌呤降解位点形成的微孔还提高了最大湿气透过率238%和亲水性。这种基于 PPF 材料的可分离粘合剂策略将显着促进用于生物医学应用的下一代软组织粘合剂。10 MPa) 和早期粘合强度 (1.70 ± 0.08 MPa) 45%,然后随着腺嘌呤降解,多点相互作用消失,同时实现与组织的可去除粘合功能。此外,腺嘌呤降解位点形成的微孔还提高了最大湿气透过率238%和亲水性。这种基于 PPF 材料的可分离粘合剂策略将显着促进用于生物医学应用的下一代软组织粘合剂。从腺嘌呤降解位点形成的微孔也将最大水蒸气透过率提高了 238% 和亲水性。这种基于 PPF 材料的可分离粘合剂策略将显着促进用于生物医学应用的下一代软组织粘合剂。从腺嘌呤降解位点形成的微孔也将最大水蒸气透过率提高了 238% 和亲水性。这种基于 PPF 材料的可分离粘合剂策略将显着促进用于生物医学应用的下一代软组织粘合剂。