当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Atomic Short-Range Order in a Cation-Deficient Perovskite Anode for Fast-Charging and Long-Life Lithium-Ion Batteries
Advanced Materials ( IF 27.4 ) Pub Date : 2022-03-01 , DOI: 10.1002/adma.202200914 Liting Yang 1 , Xuhui Xiong 1 , Guisheng Liang 1 , Xiao Li 1 , Chao Wang 1 , Wenbin You 1 , Xuebing Zhao 1 , Xianhu Liu 2 , Renchao Che 1
Advanced Materials ( IF 27.4 ) Pub Date : 2022-03-01 , DOI: 10.1002/adma.202200914 Liting Yang 1 , Xuhui Xiong 1 , Guisheng Liang 1 , Xiao Li 1 , Chao Wang 1 , Wenbin You 1 , Xuebing Zhao 1 , Xianhu Liu 2 , Renchao Che 1
Affiliation
Perovskite-type oxides are widely used for energy conversion and storage, but their rate-inhibiting phase transition and large volume change hinder the applications of most perovskite-type oxides for high-rate electrochemical energy storage. Here, it is shown that a cation-deficient perovskite CeNb3O9 (CNO) can store a sufficient amount of lithium at a high charge/discharge rate, even when the sizes of the synthesized particles are on the order of micrometers. At 60 C (15 A g−1), corresponding to a 1 min charge, the CNO anode delivers over 52.8% of its capacity. In addition, the CNO anode material exhibits 96.6% capacity retention after 2000 charge–discharge cycles at 50 C (12.5 A g−1), indicating exceptional long-term cycling stability at high rates. The excellent cycling performance is attributed to the formation of atomic short-range order, which significantly prevents local and long-range structural rearrangements, stabilizing the host structure and being responsible for the small volume evolution. Moreover, the extremely high rate capacity can be explained by the intrinsically large interstitial sites in multiple directions, intercalation pseudocapacitance, atomic short-range order, and cation-vacancy-enhanced 3D-conduction networks for lithium ions. These structural characteristics and mechanisms can be used to design advanced perovskite electrode materials for fast-charging and long-life lithium-ion batteries.
中文翻译:
用于快速充电和长寿命锂离子电池的缺阳离子钙钛矿阳极中的原子短程有序
钙钛矿型氧化物广泛用于能量转换和存储,但它们的速率抑制相变和大的体积变化阻碍了大多数钙钛矿型氧化物在高倍率电化学储能中的应用。此处显示,即使合成粒子的大小为微米量级,阳离子缺陷型钙钛矿CeNb 3 O 9 (CNO)也可以以高充放电速率存储足够量的锂。在 60 C (15 A g -1 ) 下,对应于 1 分钟充电,CNO 阳极提供超过 52.8% 的容量。此外,CNO 负极材料在 50 C (12.5 A g -1),表明在高速率下具有出色的长期循环稳定性。优异的循环性能归因于原子短程有序的形成,这显着防止了局部和长程结构重排,稳定了主体结构并负责小体积演化。此外,极高的倍率容量可以通过多个方向上固有的大间隙位点、插层赝电容、原子短程有序和阳离子空位增强的锂离子 3D 传导网络来解释。这些结构特征和机制可用于设计用于快速充电和长寿命锂离子电池的先进钙钛矿电极材料。
更新日期:2022-03-01
中文翻译:
用于快速充电和长寿命锂离子电池的缺阳离子钙钛矿阳极中的原子短程有序
钙钛矿型氧化物广泛用于能量转换和存储,但它们的速率抑制相变和大的体积变化阻碍了大多数钙钛矿型氧化物在高倍率电化学储能中的应用。此处显示,即使合成粒子的大小为微米量级,阳离子缺陷型钙钛矿CeNb 3 O 9 (CNO)也可以以高充放电速率存储足够量的锂。在 60 C (15 A g -1 ) 下,对应于 1 分钟充电,CNO 阳极提供超过 52.8% 的容量。此外,CNO 负极材料在 50 C (12.5 A g -1),表明在高速率下具有出色的长期循环稳定性。优异的循环性能归因于原子短程有序的形成,这显着防止了局部和长程结构重排,稳定了主体结构并负责小体积演化。此外,极高的倍率容量可以通过多个方向上固有的大间隙位点、插层赝电容、原子短程有序和阳离子空位增强的锂离子 3D 传导网络来解释。这些结构特征和机制可用于设计用于快速充电和长寿命锂离子电池的先进钙钛矿电极材料。