当前位置:
X-MOL 学术
›
Adv. Nonlinear Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Infinitely many radial and non-radial sign-changing solutions for Schrödinger equations
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2021-0221 Gui-Dong Li 1 , Yong-Yong Li 2 , Chun-Lei Tang 3
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2021-0221 Gui-Dong Li 1 , Yong-Yong Li 2 , Chun-Lei Tang 3
Affiliation
In the present paper, a class of Schrödinger equations is investigated, which can be stated as −Δu+V(x)u=f(u), x∈ℝN. - \Delta u + V(x)u = f(u),\;\;\;\;x \in {{\rm{\mathbb R}}^N}. If the external potential V is radial and coercive, then we give the local Ambrosetti-Rabinowitz super-linear condition on the nonlinearity term f ∈ C (ℝ, ℝ) which assures the problem has not only infinitely many radial sign-changing solutions, but also infinitely many non-radial sign-changing solutions.
中文翻译:
薛定谔方程的无限多个径向和非径向符号变化解
本文研究了一类薛定谔方程,可表示为-Δu+V(x)u=f(u),x∈ℝN。- \Delta u + V(x)u = f(u),\;\;\;\;x \in {{\rm{\mathbb R}}^N}。如果外部势 V 是径向和矫顽的,那么我们在非线性项 f ∈ C (ℝ, ℝ) 上给出局部 Ambrosetti-Rabinowitz 超线性条件,这确保问题不仅具有无限多个径向符号变化解,而且也有无穷多个非径向符号改变解。
更新日期:2022-01-01
中文翻译:
薛定谔方程的无限多个径向和非径向符号变化解
本文研究了一类薛定谔方程,可表示为-Δu+V(x)u=f(u),x∈ℝN。- \Delta u + V(x)u = f(u),\;\;\;\;x \in {{\rm{\mathbb R}}^N}。如果外部势 V 是径向和矫顽的,那么我们在非线性项 f ∈ C (ℝ, ℝ) 上给出局部 Ambrosetti-Rabinowitz 超线性条件,这确保问题不仅具有无限多个径向符号变化解,而且也有无穷多个非径向符号改变解。