当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Improved Interfacial Affinity and CO2 Separation Performance of Asymmetric Mixed Matrix Membranes by Incorporating Postmodified MIL-53(Al)
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2016-08-17 00:00:00 , DOI: 10.1021/acsami.6b07686 Haitao Zhu 1, 2 , Lina Wang 1 , Xingming Jie 1 , Dandan Liu 1 , Yiming Cao 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2016-08-17 00:00:00 , DOI: 10.1021/acsami.6b07686 Haitao Zhu 1, 2 , Lina Wang 1 , Xingming Jie 1 , Dandan Liu 1 , Yiming Cao 1
Affiliation
Asymmetric mixed matrix membranes(MMMs) with MOFs hold great application potential for energy-efficient gas separations. However, the particle aggregation and nonselective interfacial microvoids restrict the gas separation performance of asymmetric MMMs. Herein, nanoporous metal–organic framework (MOF) of MIL-53(Al) was modified with aminosilane after solvothermal synthesis. The postfunctionalization by grafting alkyl chains can form hydrogen bonds with polymer chains to enhance the affinity with polymer matrix and facilitate the preferential adsorption of CO2 by dipole–quadrupole interaction with the functional group. Then the postmodified MIL-53(Al) was incorporated as filler into poly(ether imide) Ultem1000 to fabricate high-quality asymmetric MMMs with well dispersed particles in polymer matrix and good adhesion at the MOFs-polymer interface. The Ultem/S-MIL-53(Al) asymmetric MMMs exhibited remarkable combinations of gas permeance and ideal selectivity for CO2/N2 separation at 10 wt % filler loading. The CO2 permeance achieved 24.1 GPU, an increase of 165% compared with pure Ultem membrane. Meanwhile, the ideal CO2/N2 selectivity also increased from 31.0 up to 41.1. The strategy of post covalent modification for MOFs provides an effective way to improve the interfacial affinity and gas separation performance.
中文翻译:
通过加入后修饰的MIL-53(Al)改善不对称混合基质膜的界面亲和力和CO 2分离性能
具有MOF的不对称混合基质膜(MMM)在高能效气体分离方面具有巨大的应用潜力。但是,颗粒聚集和非选择性界面微孔限制了不对称MMM的气体分离性能。在这里,溶剂热合成后,用氨基硅烷对MIL-53(Al)的纳米多孔金属有机骨架(MOF)进行了改性。通过接枝烷基链的后官能化可以与聚合物链形成氢键,以增强与聚合物基体的亲和力,并有利于CO 2的优先吸附通过偶极-四极与官能团的相互作用。然后将后改性的MIL-53(Al)作为填充剂掺入聚醚酰亚胺Ultem1000中,以制造高质量的不对称MMM,其在聚合物基质中的颗粒分布良好,并且在MOFs-聚合物界面处具有良好的附着力。Ultem / S-MIL-53(Al)不对称MMM在填充剂含量为10 wt%时,表现出出色的气体渗透性和理想的CO 2 / N 2分离选择性组合。CO 2渗透率达到24.1 GPU,与纯Ultem膜相比增加了165%。同时,理想的CO 2 / N 2选择性也从31.0增加到41.1。MOF的共价后修饰策略提供了一种改善界面亲和力和气体分离性能的有效方法。
更新日期:2016-08-17
中文翻译:
通过加入后修饰的MIL-53(Al)改善不对称混合基质膜的界面亲和力和CO 2分离性能
具有MOF的不对称混合基质膜(MMM)在高能效气体分离方面具有巨大的应用潜力。但是,颗粒聚集和非选择性界面微孔限制了不对称MMM的气体分离性能。在这里,溶剂热合成后,用氨基硅烷对MIL-53(Al)的纳米多孔金属有机骨架(MOF)进行了改性。通过接枝烷基链的后官能化可以与聚合物链形成氢键,以增强与聚合物基体的亲和力,并有利于CO 2的优先吸附通过偶极-四极与官能团的相互作用。然后将后改性的MIL-53(Al)作为填充剂掺入聚醚酰亚胺Ultem1000中,以制造高质量的不对称MMM,其在聚合物基质中的颗粒分布良好,并且在MOFs-聚合物界面处具有良好的附着力。Ultem / S-MIL-53(Al)不对称MMM在填充剂含量为10 wt%时,表现出出色的气体渗透性和理想的CO 2 / N 2分离选择性组合。CO 2渗透率达到24.1 GPU,与纯Ultem膜相比增加了165%。同时,理想的CO 2 / N 2选择性也从31.0增加到41.1。MOF的共价后修饰策略提供了一种改善界面亲和力和气体分离性能的有效方法。