Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hierarchical Nanocellulose-Based Gel Polymer Electrolytes for Stable Na Electrodeposition in Sodium Ion Batteries
Small ( IF 13.0 ) Pub Date : 2022-02-27 , DOI: 10.1002/smll.202107183 Neeru Mittal 1 , Sean Tien 1 , Erlantz Lizundia 2, 3 , Markus Niederberger 1
Small ( IF 13.0 ) Pub Date : 2022-02-27 , DOI: 10.1002/smll.202107183 Neeru Mittal 1 , Sean Tien 1 , Erlantz Lizundia 2, 3 , Markus Niederberger 1
Affiliation
Sodium ion batteries (NIBs) based on earth-abundant materials offer efficient, safe, and environmentally sustainable solutions for a decarbonized society. However, to compete with mature energy storage technologies such as lithium ion batteries, further progress is needed, particularly regarding the energy density and operational lifetime. Considering these aspects as well as a circular economy perspective, the authors use biodegradable cellulose nanoparticles for the preparation of a gel polymer electrolyte that offers a high liquid electrolyte uptake of 2985%, an ionic conductivity of 2.32 mS cm−1, and a Na+ transference number of 0.637. A balanced ratio of mechanically rigid cellulose nanocrystals and flexible cellulose nanofibers results in a mesoporous hierarchical structure that ensures close contact with metallic Na. This architecture offers stable Na plating/stripping at current densities up to ±500 µA cm−2, outperforming conventional fossil-based NIBs containing separator–liquid electrolytes. Paired with an environmentally sustainable and economically attractive Na2Fe2(SO4)3 cathode, the battery reaches an energy density of 240 Wh kg−1, delivering 69.7 mAh g−1 after 50 cycles at a rate of 1C. In comparison, Celgard in liquid electrolyte delivers only 0.6 mAh g−1 at C/4. Such gel polymer electrolytes may open up new opportunities for sustainable energy storage systems beyond lithium ion batteries.
中文翻译:
基于多级纳米纤维素的凝胶聚合物电解质用于钠离子电池中稳定的钠电沉积
基于地球丰富材料的钠离子电池 (NIB) 为脱碳社会提供了高效、安全和环境可持续的解决方案。然而,要与锂离子电池等成熟的储能技术竞争,还需要进一步发展,尤其是在能量密度和使用寿命方面。考虑到这些方面以及循环经济的观点,作者使用可生物降解的纤维素纳米颗粒制备凝胶聚合物电解质,该电解质具有 2985% 的高液体电解质吸收率、2.32 mS cm -1的离子电导率和 Na +转移数为0.637。机械刚性纤维素纳米晶体和柔性纤维素纳米纤维的平衡比例导致中孔分级结构,确保与金属 Na 紧密接触。这种架构在高达 ±500 µA cm -2的电流密度下提供稳定的 Na 电镀/剥离,优于包含分离器-液体电解质的传统化石基 NIB。搭配环境可持续且具有经济吸引力的 Na 2 Fe 2 (SO 4 ) 3阴极,电池达到 240 Wh kg −1的能量密度,提供 69.7 mAh g −1以 1C 的速率循环 50 次后。相比之下,液体电解质中的 Celgard 在C/4时仅提供 0.6 mAh g -1 。这种凝胶聚合物电解质可能为锂离子电池以外的可持续储能系统开辟新的机会。
更新日期:2022-02-27
中文翻译:
基于多级纳米纤维素的凝胶聚合物电解质用于钠离子电池中稳定的钠电沉积
基于地球丰富材料的钠离子电池 (NIB) 为脱碳社会提供了高效、安全和环境可持续的解决方案。然而,要与锂离子电池等成熟的储能技术竞争,还需要进一步发展,尤其是在能量密度和使用寿命方面。考虑到这些方面以及循环经济的观点,作者使用可生物降解的纤维素纳米颗粒制备凝胶聚合物电解质,该电解质具有 2985% 的高液体电解质吸收率、2.32 mS cm -1的离子电导率和 Na +转移数为0.637。机械刚性纤维素纳米晶体和柔性纤维素纳米纤维的平衡比例导致中孔分级结构,确保与金属 Na 紧密接触。这种架构在高达 ±500 µA cm -2的电流密度下提供稳定的 Na 电镀/剥离,优于包含分离器-液体电解质的传统化石基 NIB。搭配环境可持续且具有经济吸引力的 Na 2 Fe 2 (SO 4 ) 3阴极,电池达到 240 Wh kg −1的能量密度,提供 69.7 mAh g −1以 1C 的速率循环 50 次后。相比之下,液体电解质中的 Celgard 在C/4时仅提供 0.6 mAh g -1 。这种凝胶聚合物电解质可能为锂离子电池以外的可持续储能系统开辟新的机会。