当前位置: X-MOL 学术Adv. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biodegradable Elastomers and Gels for Elastic Electronics
Advanced Science ( IF 14.3 ) Pub Date : 2022-02-25 , DOI: 10.1002/advs.202105146
Shuo Chen 1 , Zekai Wu 1 , Chengzhen Chu 1 , Yufeng Ni 1 , Rasoul Esmaeely Neisiany 2 , Zhengwei You 1
Affiliation  

Biodegradable electronics are considered as an important bio-friendly solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Elastic electronics with higher imitative mechanical characteristics of human tissues, have become crucial for human-related applications. The convergence of biodegradability and elasticity has emerged a new paradigm of next-generation electronics especially for wearable and implantable electronics. The corresponding biodegradable elastic materials are recognized as a key to drive this field toward the practical applications. The review first clarifies the relevant concepts including biodegradable and elastic electronics along with their general design principles. Subsequently, the crucial mechanisms of the degradation in polymeric materials are discussed in depth. The diverse types of biodegradable elastomers and gels for electronics are then summarized. Their molecular design, modification, processing, and device fabrication especially the structure–properties relationship as well as recent advanced are reviewed in detail. Finally, the current challenges and the future directions are proposed. The critical insights of biodegradability and elastic characteristics in the elastomers and gel allows them to be tailored and designed more effectively for electronic applications.

中文翻译:


用于弹性电子产品的可生物降解弹性体和凝胶



可生物降解电子产品被认为是电子废物(e-waste)管理、可持续发展和新兴植入设备的重要生物友好型解决方案。具有更高模仿人体组织机械特性的弹性电子器件已成为与人体相关的应用的关键。生物降解性和弹性的融合已经出现了下一代电子产品的新范例,特别是可穿戴和植入式电子产品。相应的可生物降解弹性材料被认为是推动该领域走向实际应用的关键。该评论首先阐明了相关概念,包括可生物降解和弹性电子产品及其一般设计原则。随后,深入讨论了聚合物材料降解的关键机制。然后总结了用于电子产品的各种类型的可生物降解弹性体和凝胶。详细回顾了它们的分子设计、修饰、加工和器件制造,特别是结构-性能关系以及最新进展。最后,提出当前面临的挑战和未来的方向。对弹性体和凝胶的生物降解性和弹性特性的关键见解使它们能够更有效地针对电子应用进行定制和设计。
更新日期:2022-02-25
down
wechat
bug