当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An Efficient Steam-Induced Heterostructured Air Electrode for Protonic Ceramic Electrochemical Cells
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-02-23 , DOI: 10.1002/adfm.202110998 Kang Xu 1 , Hua Zhang 1 , Yangsen Xu 1 , Fan He 1 , Yucun Zhou 2 , Yuxin Pan 1 , Jiyang Ma 1 , Bote Zhao 1 , Wei Yuan 3 , Yu Chen 1 , Meilin Liu 2
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-02-23 , DOI: 10.1002/adfm.202110998 Kang Xu 1 , Hua Zhang 1 , Yangsen Xu 1 , Fan He 1 , Yucun Zhou 2 , Yuxin Pan 1 , Jiyang Ma 1 , Bote Zhao 1 , Wei Yuan 3 , Yu Chen 1 , Meilin Liu 2
Affiliation
The development of active and durable air electrodes is of great significance to the maturity of reversible protonic ceramic electrochemical cells (R-PCECs). This article reports the recent findings in the performance enhancement of R-PCECs using a novel heterostructured air electrode, consisting of a double perovskite PrBaCo1.6Fe0.2Nb0.2O5+δ backbone covered with in situ exsolved nanoparticles of Nb-deficient PrBaCo1.6Fe0.2Nb0.2−xO5+δ. Such a heterostructured electrode is induced by the benign interaction of the electrode and steam during the cell operation, showing a faster surface exchange process, as confirmed by a mapping of high-angle annular dark-field transmission electron microscopy image, and distribution of relaxation time analyses of the electrochemical impedance spectra. The in situ formed Nb-deficient nanoparticles and Nb-rich parental perovskite significantly enhance the catalytic activity and durability of the air electrode toward oxygen reduction/evolution reaction on single cells at 650 °C, achieving a peak power density of 1.059 W cm−2 in fuel cell mode, a current density of 2.148 A cm−2 at 1.3 V in electrolysis cell mode, and good durability of a cycling test at ±0.5 A cm−2 for 200 h in dual modes of fuel cell and electrolysis cell.
中文翻译:
用于质子陶瓷电化学电池的高效蒸汽诱导异质结构空气电极
开发活性和耐用的空气电极对可逆质子陶瓷电化学电池(R-PCECs)的成熟具有重要意义。本文报道了使用新型异质结构空气电极提高 R-PCEC 性能的最新发现,该电极由双钙钛矿 PrBaCo 1.6 Fe 0.2 Nb 0.2 O 5+ δ骨架覆盖,原位溶解的 Nb 缺陷 PrBaCo 1.6 Fe纳米粒子组成0.2 Nb 0.2− x O 5+ δ. 这种异质结构电极是由电池运行过程中电极和蒸汽的良性相互作用引起的,显示出更快的表面交换过程,如高角度环形暗场透射电子显微镜图像的映射和弛豫时间分布所证实电化学阻抗谱分析。原位形成的缺铌纳米颗粒和富铌钙钛矿显着提高了空气电极在 650 °C 下对单电池的氧还原/析氧反应的催化活性和耐久性,达到 1.059 W cm -2的峰值功率密度在燃料电池模式下,在电解电池模式下 1.3 V 时的电流密度为 2.148 A cm -2,在 ±0.5 A cm -2的循环测试中具有良好的耐久性在燃料电池和电解电池双模式下持续 200 小时。
更新日期:2022-02-23
中文翻译:
用于质子陶瓷电化学电池的高效蒸汽诱导异质结构空气电极
开发活性和耐用的空气电极对可逆质子陶瓷电化学电池(R-PCECs)的成熟具有重要意义。本文报道了使用新型异质结构空气电极提高 R-PCEC 性能的最新发现,该电极由双钙钛矿 PrBaCo 1.6 Fe 0.2 Nb 0.2 O 5+ δ骨架覆盖,原位溶解的 Nb 缺陷 PrBaCo 1.6 Fe纳米粒子组成0.2 Nb 0.2− x O 5+ δ. 这种异质结构电极是由电池运行过程中电极和蒸汽的良性相互作用引起的,显示出更快的表面交换过程,如高角度环形暗场透射电子显微镜图像的映射和弛豫时间分布所证实电化学阻抗谱分析。原位形成的缺铌纳米颗粒和富铌钙钛矿显着提高了空气电极在 650 °C 下对单电池的氧还原/析氧反应的催化活性和耐久性,达到 1.059 W cm -2的峰值功率密度在燃料电池模式下,在电解电池模式下 1.3 V 时的电流密度为 2.148 A cm -2,在 ±0.5 A cm -2的循环测试中具有良好的耐久性在燃料电池和电解电池双模式下持续 200 小时。