Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ferroelectric Polymer Nanofibers Reminiscent of Morphotropic Phase Boundary Behavior for Improved Piezoelectric Energy Harvesting
Small ( IF 13.0 ) Pub Date : 2022-02-20 , DOI: 10.1002/smll.202104472 Jiseul Park 1 , Yeong-Won Lim 1, 2 , Sam Yeon Cho 3 , Myunghwan Byun 4 , Kwi-Il Park 5 , Han Eol Lee 1 , Sang Don Bu 3 , Ki-Tae Lee 1, 2 , Qing Wang 6 , Chang Kyu Jeong 1, 2
Small ( IF 13.0 ) Pub Date : 2022-02-20 , DOI: 10.1002/smll.202104472 Jiseul Park 1 , Yeong-Won Lim 1, 2 , Sam Yeon Cho 3 , Myunghwan Byun 4 , Kwi-Il Park 5 , Han Eol Lee 1 , Sang Don Bu 3 , Ki-Tae Lee 1, 2 , Qing Wang 6 , Chang Kyu Jeong 1, 2
Affiliation
Ferroelectric and piezoelectric polymers have attracted great attention from many research and engineering fields due to its mechanical robustness and flexibility as well as cost-effectiveness and easy processibility. Nevertheless, the electrical performance of piezoelectric polymers is very hard to reach that of piezoelectric ceramics basically and physically, even in the case of the representative ferroelectric polymer, poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)). Very recently, the concept for the morphotropic phase boundary (MPB), which has been exclusive in the field of high-performance piezoelectric ceramics, has been surprisingly confirmed in P(VDF-TrFE) piezoelectric copolymers by the groups. This study demonstrates the exceptional behaviors reminiscent of MPB and relaxor ferroelectrics in the feature of widely utilized electrospun P(VDF-TrFE) nanofibers. Consequently, an energy harvesting device that exceeds the performance limitation of the existing P(VDF-TrFE) materials is developed. Even the unpoled MPB-based P(VDF-TrFE) nanofibers show higher output than the electrically poled normal P(VDF-TrFE) nanofibers. This study is the first step toward the manufacture of a new generation of piezoelectric polymers with practical applications.
中文翻译:
铁电聚合物纳米纤维让人联想到变形相边界行为以改善压电能量收集
铁电和压电聚合物由于其机械强度和灵活性以及成本效益和易于加工性而引起了许多研究和工程领域的极大关注。然而,压电聚合物的电性能在物理上很难达到压电陶瓷,即使是具有代表性的铁电聚合物聚(偏二氟乙烯)-三氟乙烯) (P(VDF-TrFE))。最近,在高性能压电陶瓷领域中独有的变态相界 (MPB) 概念在 P(VDF-TrFE) 压电共聚物中得到了研究小组的惊人证实。这项研究证明了在广泛使用的电纺 P(VDF-TrFE) 纳米纤维的特征中具有让人联想到 MPB 和弛豫铁电体的特殊行为。因此,开发了一种超出现有 P(VDF-TrFE) 材料性能限制的能量收集装置。即使是未极化的基于 MPB 的 P(VDF-TrFE) 纳米纤维也显示出比电极化的普通 P(VDF-TrFE) 纳米纤维更高的输出。这项研究是制造具有实际应用的新一代压电聚合物的第一步。
更新日期:2022-02-20
中文翻译:
铁电聚合物纳米纤维让人联想到变形相边界行为以改善压电能量收集
铁电和压电聚合物由于其机械强度和灵活性以及成本效益和易于加工性而引起了许多研究和工程领域的极大关注。然而,压电聚合物的电性能在物理上很难达到压电陶瓷,即使是具有代表性的铁电聚合物聚(偏二氟乙烯)-三氟乙烯) (P(VDF-TrFE))。最近,在高性能压电陶瓷领域中独有的变态相界 (MPB) 概念在 P(VDF-TrFE) 压电共聚物中得到了研究小组的惊人证实。这项研究证明了在广泛使用的电纺 P(VDF-TrFE) 纳米纤维的特征中具有让人联想到 MPB 和弛豫铁电体的特殊行为。因此,开发了一种超出现有 P(VDF-TrFE) 材料性能限制的能量收集装置。即使是未极化的基于 MPB 的 P(VDF-TrFE) 纳米纤维也显示出比电极化的普通 P(VDF-TrFE) 纳米纤维更高的输出。这项研究是制造具有实际应用的新一代压电聚合物的第一步。