当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Macroscale Conjugated Microporous Polymers: Controlling Versatile Functionalities Over Several Dimensions
Advanced Materials ( IF 27.4 ) Pub Date : 2022-02-18 , DOI: 10.1002/adma.202104952 Weiyi Zhang 1 , Hongyu Zuo 1 , Zhonghua Cheng 1 , Yu Shi 1 , Zhengjun Guo 1 , Nan Meng 1 , Arne Thomas 2 , Yaozu Liao 1
Advanced Materials ( IF 27.4 ) Pub Date : 2022-02-18 , DOI: 10.1002/adma.202104952 Weiyi Zhang 1 , Hongyu Zuo 1 , Zhonghua Cheng 1 , Yu Shi 1 , Zhengjun Guo 1 , Nan Meng 1 , Arne Thomas 2 , Yaozu Liao 1
Affiliation
Since discovered in 2007, conjugated microporous polymers (CMPs) have been developed for numerous applications including gas adsorption, sensing, organic and photoredox catalysis, energy storage, etc. While featuring abundant micropores, the structural rigidity derived from CMPs’ stable π-conjugated skeleton leads to insolubility and thus poor processability, which severely limits their applicability, e.g., in CMP-based devices. Hence, the development of CMPs whose structure can not only be controlled on the micro- but also on the macroscale have attracted tremendous interest. In conventional synthesis procedures, CMPs are obtained as powders, but in recent years various bottom-up synthesis strategies have been developed, which yield CMPs as thin films on substrates or as hybrid materials, allowing to span length scales from individual conjugated monomers to micro-/macrostructures. This review surveys recent advances on the construction of CMPs into macroscale structures, including membranes, films, aerogels, sponges, and other architectures. The focus is to describe the underlying fabrication techniques and the implications which follow from the macroscale morphologies, involving new chemistry and physics in such materials for applications like molecular separation/filtration/adsorption, energy storage and conversion, photothermal transformation, sensing, or catalysis.
中文翻译:
宏观共轭微孔聚合物:控制多个维度的多功能功能
自 2007 年发现以来,共轭微孔聚合物 (CMPs) 已被开发用于多种应用,包括气体吸附、传感、有机和光氧化还原催化、储能等。虽然具有丰富的微孔,但 CMPs 稳定的 π 共轭骨架带来的结构刚性导致不溶性和因此较差的可加工性,这严重限制了它们的适用性,例如在基于CMP的器件中。因此,其结构不仅可以在微观上而且可以在宏观上控制的CMP的发展引起了极大的兴趣。在传统的合成过程中,CMP 以粉末形式获得,但近年来已经开发了各种自下而上的合成策略,将 CMP 作为基材上的薄膜或混合材料产生,允许跨越从单个共轭单体到微观/宏观结构的长度尺度。本综述调查了将 CMP 构建成宏观结构的最新进展,包括膜、薄膜、气凝胶、海绵和其他结构。重点是描述潜在的制造技术和宏观形态的影响,涉及此类材料中的新化学和物理,用于分子分离/过滤/吸附、能量存储和转换、光热转化、传感或催化等应用。
更新日期:2022-02-18
中文翻译:
宏观共轭微孔聚合物:控制多个维度的多功能功能
自 2007 年发现以来,共轭微孔聚合物 (CMPs) 已被开发用于多种应用,包括气体吸附、传感、有机和光氧化还原催化、储能等。虽然具有丰富的微孔,但 CMPs 稳定的 π 共轭骨架带来的结构刚性导致不溶性和因此较差的可加工性,这严重限制了它们的适用性,例如在基于CMP的器件中。因此,其结构不仅可以在微观上而且可以在宏观上控制的CMP的发展引起了极大的兴趣。在传统的合成过程中,CMP 以粉末形式获得,但近年来已经开发了各种自下而上的合成策略,将 CMP 作为基材上的薄膜或混合材料产生,允许跨越从单个共轭单体到微观/宏观结构的长度尺度。本综述调查了将 CMP 构建成宏观结构的最新进展,包括膜、薄膜、气凝胶、海绵和其他结构。重点是描述潜在的制造技术和宏观形态的影响,涉及此类材料中的新化学和物理,用于分子分离/过滤/吸附、能量存储和转换、光热转化、传感或催化等应用。