当前位置: X-MOL 学术Small › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strain-Plasmonic Coupled Broadband Photodetector Based on Monolayer MoS2
Small ( IF 13.0 ) Pub Date : 2022-02-17 , DOI: 10.1002/smll.202107104
Donglin Lu 1 , Yang Chen 1 , Lingan Kong 1 , Chaobo Luo 2 , Zheyi Lu 1 , Quanyang Tao 1 , Wenjing Song 1 , Likuan Ma 1 , Zhiwei Li 1 , Wanying Li 1 , Liting Liu 1 , Qianyuan Li 1 , Xiangdong Yang 3 , Jun Li 2 , Jia Li 3 , Xidong Duan 3 , Lei Liao 1 , Yuan Liu 1
Affiliation  

2D Semiconductors are promising in the development of next-generation photodetectors. However, the performances of 2D photodetectors are largely limited by their poor light absorption (due to ultrathin thickness) and small detection range (due to large bandgap). To overcome the limitations, a strain-plasmonic coupled 2D photodetector is designed by mechanically integrating monolayer MoS2 on top of prefabricated Au nanoparticle arrays. Within this structure, the large biaxial tensile strain can greatly reduce the MoS2 bandgap for broadband photodetection, and at the same time, the nanoparticles can significantly enhance the light intensity around MoS2 with much improved light absorption. Together, the strain-plasmonic coupled photodetector can broaden the detection range by 60 nm and increase the signal-to-noise ratio by 650%, representing the ultimate optimization of detection range and detection intensity at the same time. The strain-plasmonic coupling effect is further systematically characterized and confirmed by using Raman and photoluminescence spectrophotometry. Furthermore, the existence of built-in potential and photo-switching behavior is demonstrated between the strained and unstrained region, constructing a self-powered homojunction photodetector. This approach provides a simple strategy to couple strain effect and plasmonic effect, which can provide a new strategy for designing high-performance and broadband 2D optoelectronic devices.

中文翻译:

基于单层MoS2的应变-等离子体耦合宽带光电探测器

二维半导体在开发下一代光电探测器方面很有前景。然而,二维光电探测器的性能在很大程度上受到其光吸收差(由于超薄厚度)和小检测范围(由于大带隙)的限制。为了克服这些限制,通过将单层 MoS 2机械集成在预制的 Au 纳米颗粒阵列上,设计了一种应变-等离子体耦合的 2D 光电探测器。在这种结构中,大的双轴拉伸应变可以大大降低用于宽带光电探测的MoS 2带隙,同时纳米颗粒可以显着增强MoS 2周围的光强度大大改善了光吸收。应变-等离子体耦合光电探测器可以将探测范围扩大60 nm,信噪比提高650%,同时代表了探测范围和探测强度的终极优化。通过使用拉曼和光致发光分光光度法进一步系统地表征和证实了应变-等离子体耦合效应。此外,在应变和非应变区域之间证明了内置电位和光开关行为的存在,构建了自供电同质结光电探测器。该方法提供了一种耦合应变效应和等离子体效应的简单策略,可为设计高性能和宽带二维光电器件提供新策略。
更新日期:2022-02-17
down
wechat
bug