Advanced Composites and Hybrid Materials ( IF 23.2 ) Pub Date : 2022-02-15 , DOI: 10.1007/s42114-022-00428-z Eun-Bi Kim 1, 2 , M. Imran 2 , Sadia Ameen 2 , Ahmad Umar 3 , M. Shaheer Akhtar 4
Herein, using 1, 3 indandione and three thiophene unit by Suzuki coupling reaction, small organic oligomer–based indandione derivative, 2-(5″-hexyl-[2,2′:5′2″ terthiophen]-5-yl) methylene)-1H-indene-1,3(2H) dione oligomer (HTD) was synthesized. A functional and highly effective nanocomposite based on the synthesized HTD oligomer and graphene oxide (GO) was further synthesized and utilized to fabricate high-sensitive and selective chemical sensor. The synthesized HTD@GO functionalized nanocomposites were further examined by several techniques and finally coated on the glassy carbon electrode (GCE) to fabricate the chemical sensor. Due to the synergistic impacts of HTD oligomer and GO, the functionalized HTD@GO nanocomposite exhibited outstanding physiochemical, structural, and surface characteristics. Thus, using an electrochemical method, the HTD@GO/GCE sensor probe demonstrated the outstanding simultaneous trace detection of heavy metals such as Cr2+ and Cu2+ ions. The HTD@GO/GCE sensor probe revealed a strong selectivity towards Cr2+ and Cu2+ ions when compared to other metal ions (Al3+, Zn2+, K+, Mn2+). Importantly, the HTD@GO/GCE-based sensor exhibited relatively good dynamic linear ranges of 1–100 µM and detection limit values of ~3.65 μM and ~2.25 μM, respectively, for trace Cr2+ and Cu2+ ions. The HTD@GO/GCE sensor probe has low relative standard deviations (RSDs) of ~10% and ~6.4% for Cr2+ and Cu2+ ions, respectively, as suggested by the repeatability test. Analyzing actual water samples was also used to test the reliability of the functionalized nanocomposite sensor.
Graphical abstract
HTD@GO/GCE-based-sensor presents good detection limit values of ~3.65 μM and ~2.25 μM with excellent linear dynamic for Cr2+ and Cu2+ ions, respectively.
中文翻译:
茚二酮低聚物@氧化石墨烯功能化纳米复合材料用于增强和选择性检测痕量 Cr2+ 和 Cu2+ 离子
在此,通过Suzuki偶联反应使用1、3茚满二酮和三噻吩单元,基于有机低聚物的小茚二酮衍生物,2-(5″-己基-[2,2′:5′2″三噻吩]-5-基)亚甲基)-1H-indene-1,3(2H) 二酮低聚物 (HTD) 被合成。进一步合成了基于合成的HTD低聚物和氧化石墨烯(GO)的功能性和高效纳米复合材料,并用于制造高灵敏度和选择性的化学传感器。合成的 HTD@GO 功能化纳米复合材料通过多种技术进一步检查,最后涂覆在玻璃碳电极 (GCE) 上以制造化学传感器。由于 HTD 低聚物和 GO 的协同作用,功能化的 HTD@GO 纳米复合材料表现出优异的物理化学、结构和表面特性。因此,使用电化学方法,2+和Cu 2+离子。与其他金属离子(Al 3+、Zn 2+、K +、Mn 2+)相比, HTD@GO/GCE 传感器探针显示出对 Cr 2+和 Cu 2+离子的强选择性。重要的是,基于 HTD@GO/GCE 的传感器对痕量 Cr 2+和 Cu 2+离子表现出相对较好的 1-100 µM 动态线性范围和 ~3.65 µM 和 ~2.25 µM 的检测极限值。HTD@GO/GCE 传感器探头对于 Cr 2+和 Cu 2+具有 ~10% 和 ~6.4% 的低相对标准偏差 (RSD)离子,分别,如重复性测试所建议的那样。分析实际水样也用于测试功能化纳米复合传感器的可靠性。
图形概要
基于 HTD@GO/GCE 的传感器对 Cr 2+和 Cu 2+离子具有良好的检测限值,分别为 ~3.65 μM 和 ~2.25 μM,具有出色的线性动态。