当前位置: X-MOL 学术Adv. Nonlinear Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Entire solutions of certain fourth order elliptic problems and related inequalities
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2021-0217
Lorenzo D’Ambrosio 1 , Enzo Mitidieri 2
Affiliation  

We study distributional solutions of semilinear biharmonic equations of the type Δ2u+f(u)=0 onℝN, {\Delta ^2}u + f(u) = 0\quad on\;{{\mathbb R} ^N}, where f is a continuous function satisfying f ( t ) t ≥ c | t | q +1 for all t ∈ ℝ with c > 0 and q > 1. By using a new approach mainly based on careful choice of suitable weighted test functions and a new version of Hardy- Rellich inequalities, we prove several Liouville theorems independently of the dimension N and on the sign of the solutions.

中文翻译:

某些四阶椭圆问题和相关不等式的全解

我们研究 Δ2u+f(u)=0 onℝN, {\Delta ^2}u + f(u) = 0\quad on\;{{\mathbb R} ^N} 类型的半线性双调和方程的分布解,其中 f 是满足 f ( t ) t ≥ c | 的连续函数 吨 | q +1 for all t ∈ ℝ with c > 0 and q > 1. 通过使用主要基于仔细选择合适的加权测试函数和新版本的 Hardy-Rellich 不等式的新方法,我们证明了几个独立于维 N 和解的符号。
更新日期:2022-01-01
down
wechat
bug