当前位置:
X-MOL 学术
›
Adv. Nonlinear Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Application of Capacities to Space-Time Fractional Dissipative Equations II: Carleson Measure Characterization for Lq(ℝ+n+1,μ) −Extension
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2021-0232 Pengtao Li 1 , Zhichun Zhai 2
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2021-0232 Pengtao Li 1 , Zhichun Zhai 2
Affiliation
This paper provides the Carleson characterization of the extension of fractional Sobolev spaces and Lebesgue spaces to Lq(ℝ+n+1,μ) L^q (\mathbb{R}_ + ^{n + 1} ,\mu ) via space-time fractional equations. For the extension of fractional Sobolev spaces, preliminary results including estimates, involving the fractional capacity, measures, the non-tangential maximal function, and an estimate of the Riesz integral of the space-time fractional heat kernel, are provided. For the extension of Lebesgue spaces, a new L p –capacity associated to the spatial-time fractional equations is introduced. Then, some basic properties of the L p –capacity, including its dual form, the L p –capacity of fractional parabolic balls, strong and weak type inequalities, are established.
中文翻译:
容量在时空分数耗散方程 II 中的应用:Lq(ℝ+n+1,μ) 的 Carleson 测量表征 - 扩展
本文提供了分数 Sobolev 空间和 Lebesgue 空间通过空间扩展到 Lq(ℝ+n+1,μ) L^q (\mathbb{R}_ + ^{n + 1} ,\mu ) 的 Carleson 表征-时间分数方程。对于分数Sobolev空间的扩展,提供了初步结果,包括估计,涉及分数容量、度量、非切线极大函数和时空分数热核的Riesz积分的估计。对于 Lebesgue 空间的扩展,引入了与时空分数方程相关的新 L p -容量。然后,建立了 L p 容量的一些基本性质,包括它的对偶形式、分数抛物线球的 L p 容量、强型和弱型不等式。
更新日期:2022-01-01
中文翻译:
容量在时空分数耗散方程 II 中的应用:Lq(ℝ+n+1,μ) 的 Carleson 测量表征 - 扩展
本文提供了分数 Sobolev 空间和 Lebesgue 空间通过空间扩展到 Lq(ℝ+n+1,μ) L^q (\mathbb{R}_ + ^{n + 1} ,\mu ) 的 Carleson 表征-时间分数方程。对于分数Sobolev空间的扩展,提供了初步结果,包括估计,涉及分数容量、度量、非切线极大函数和时空分数热核的Riesz积分的估计。对于 Lebesgue 空间的扩展,引入了与时空分数方程相关的新 L p -容量。然后,建立了 L p 容量的一些基本性质,包括它的对偶形式、分数抛物线球的 L p 容量、强型和弱型不等式。