当前位置:
X-MOL 学术
›
Adv. Nonlinear Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Existence and concentration of positive solutions for a critical p&q equation
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2020-0190 Gustavo S. Costa 1 , Giovany M. Figueiredo 1
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2020-0190 Gustavo S. Costa 1 , Giovany M. Figueiredo 1
Affiliation
We show existence and concentration results for a class of p & q critical problems given by −divaϵp|∇u|pϵp|∇u|p−2∇u+V(z)b|u|p|u|p−2u=f(u)+|u|q⋆−2uinRN, $$-div\left(a\left(\epsilon^{p}|\nabla u|^{p}\right) \epsilon^{p}|\nabla u|^{p-2} \nabla u\right)+V(z) b\left(|u|^{p}\right)|u|^{p-2} u=f(u)+|u|^{q^{\star}-2} u\, \text{in} \,\mathbb{R}^{N},$$ where u ∈ W 1, p (ℝ N ) ∩ W 1, q (ℝ N ), ϵ > 0 is a small parameter, 1 < p ≤ q < N , N ≥ 2 and q * = Nq /( N − q ). The potential V is positive and f is a superlinear function of C 1 class. We use Mountain Pass Theorem and the penalization arguments introduced by Del Pino & Felmer’s associated to Lions’ Concentration and Compactness Principle in order to overcome the lack of compactness.
中文翻译:
关键 p&q 方程的正解的存在和集中
我们展示了由 −divaϵp|∇u|pϵp|∇u|p−2∇u+V(z)b|u|p|u|p−2u= 给出的一类 p & q 关键问题的存在和集中结果f(u)+|u|q⋆−2uinRN, $$-div\left(a\left(\epsilon^{p}|\nabla u|^{p}\right) \epsilon^{p}|\ nabla u|^{p-2} \nabla u\right)+V(z) b\left(|u|^{p}\right)|u|^{p-2} u=f(u)+ |u|^{q^{\star}-2} u\, \text{in} \,\mathbb{R}^{N},$$ 其中 u ∈ W 1, p (ℝ N ) ∩ W 1 , q (ℝ N ), ε > 0 是一个小参数,1 < p ≤ q < N , N ≥ 2 和 q * = Nq /( N - q )。势 V 为正,f 是 C 1 类的超线性函数。我们使用山口定理和 Del Pino 和 Felmer 引入的与 Lions 的集中和紧凑性原则相关的惩罚论点,以克服缺乏紧凑性的问题。
更新日期:2022-01-01
中文翻译:
关键 p&q 方程的正解的存在和集中
我们展示了由 −divaϵp|∇u|pϵp|∇u|p−2∇u+V(z)b|u|p|u|p−2u= 给出的一类 p & q 关键问题的存在和集中结果f(u)+|u|q⋆−2uinRN, $$-div\left(a\left(\epsilon^{p}|\nabla u|^{p}\right) \epsilon^{p}|\ nabla u|^{p-2} \nabla u\right)+V(z) b\left(|u|^{p}\right)|u|^{p-2} u=f(u)+ |u|^{q^{\star}-2} u\, \text{in} \,\mathbb{R}^{N},$$ 其中 u ∈ W 1, p (ℝ N ) ∩ W 1 , q (ℝ N ), ε > 0 是一个小参数,1 < p ≤ q < N , N ≥ 2 和 q * = Nq /( N - q )。势 V 为正,f 是 C 1 类的超线性函数。我们使用山口定理和 Del Pino 和 Felmer 引入的与 Lions 的集中和紧凑性原则相关的惩罚论点,以克服缺乏紧凑性的问题。