当前位置:
X-MOL 学术
›
Adv. Nonlinear Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2020-0193 Said El Manouni 1 , Greta Marino 2 , Patrick Winkert 3
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2020-0193 Said El Manouni 1 , Greta Marino 2 , Patrick Winkert 3
Affiliation
In this paper we study double phase problems with nonlinear boundary condition and gradient dependence. Under quite general assumptions we prove existence results for such problems where the perturbations satisfy a suitable behavior in the origin and at infinity. Our proofs make use of variational tools, truncation techniques and comparison methods. The obtained solutions depend on the first eigenvalues of the Robin and Steklov eigenvalue problems for the p -Laplacian.
中文翻译:
双相问题的存在性结果取决于 p-拉普拉斯算子的 Robin 和 Steklov 特征值
在本文中,我们研究了具有非线性边界条件和梯度依赖性的双相问题。在相当一般的假设下,我们证明了这些问题的存在结果,其中扰动满足原点和无穷远处的合适行为。我们的证明使用了变分工具、截断技术和比较方法。获得的解取决于 p -拉普拉斯算子的 Robin 和 Steklov 特征值问题的第一个特征值。
更新日期:2022-01-01
中文翻译:
双相问题的存在性结果取决于 p-拉普拉斯算子的 Robin 和 Steklov 特征值
在本文中,我们研究了具有非线性边界条件和梯度依赖性的双相问题。在相当一般的假设下,我们证明了这些问题的存在结果,其中扰动满足原点和无穷远处的合适行为。我们的证明使用了变分工具、截断技术和比较方法。获得的解取决于 p -拉普拉斯算子的 Robin 和 Steklov 特征值问题的第一个特征值。