当前位置: X-MOL 学术Adv. Nonlinear Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bifurcation analysis for a modified quasilinear equation with negative exponent
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2021-0215
Siyu Chen 1 , Carlos Alberto Santos 2 , Minbo Yang 1 , Jiazheng Zhou 2
Affiliation  

In this paper, we consider the following modified quasilinear problem: − Δ u− κ uΔ u2=λ a(x)u− α +b(x)uβ inΩ ,u> 0inΩ ,u=0on∂ Ω , $$\begin{array}{} \left\{\begin{array}{c}\, -{\it\Delta} u-\kappa u{\it\Delta} u^2 = \lambda a(x)u^{-\alpha}+b(x)u^\beta \, \, in\, {\it\Omega}, \\\!\! u \gt 0 \, \, in\, {\it\Omega}, \, \, \, \, \, \, \, u = 0 \, \, on \, \partial{\it\Omega} , \\ \end{array}\right. \end{array} $$ where Ω ⊂ ℝ N is a smooth bounded domain, N ≥ 3, a , b are two bounded continuous functions, α > 0, 1 < β ≤ 22 * − 1 and λ > 0 is a bifurcation parameter. We use the framework of analytic bifurcation theory to obtain an analytic global unbounded path of solutions to the problem. Moreover, we get the direction of solution curve at the asmptotic point.

中文翻译:

修正的负指数拟线性方程的分岔分析

在本文中,我们考虑以下修正的拟线性问题: − Δ u− κ uΔ u2=λ a(x)u− α +b(x)uβ inΩ ,u> 0inΩ ,u=0on∂ Ω , $$\begin {数组}{} \left\{\begin{数组}{c}\, -{\it\Delta} u-\kappa u{\it\Delta} u^2 = \lambda a(x)u^{ -\alpha}+b(x)u^\beta \, \, in\, {\it\Omega}, \\\!\! u \gt 0 \, \, in\, {\it\Omega}, \, \, \, \, \, \, \, u = 0 \, \, on \, \partial{\it\Omega} , \\ \end{数组}\对。\end{array} $$ 其中 Ω ⊂ ℝ N 是光滑有界域,N ≥ 3, a , b 是两个有界连续函数,α > 0, 1 < β ≤ 22 * - 1 和 λ > 0 是分岔范围。我们使用解析分岔理论的框架来获得解决问题的解析全局无界路径。此外,我们得到了渐近点处解曲线的方向。
更新日期:2022-01-01
down
wechat
bug