当前位置:
X-MOL 学术
›
Adv. Nonlinear Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Absolute Stability of Neutral Systems with Lurie Type Nonlinearity
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2021-0216 Josef Diblík 1 , Denys Ya Khusainov 2 , Andriy Shatyrko 2 , Jaromír Baštinec 1 , Zdeněk Svoboda 1
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2021-0216 Josef Diblík 1 , Denys Ya Khusainov 2 , Andriy Shatyrko 2 , Jaromír Baštinec 1 , Zdeněk Svoboda 1
Affiliation
The paper studies absolute stability of neutral differential nonlinear systems x˙(t)=Axt+Bxt−τ+Dx˙t−τ+bf(σ(t)),σ(t)=cTx(t),t⩾0 $$ \begin{align}\dot x(t)=Ax\left ( t \right )+Bx\left ( {t-\tau} \right ) +D\dot x\left ( {t-\tau} \right ) +bf({\sigma (t)}),\,\, \sigma (t)=c^Tx(t), \,\, t\geqslant 0 \end{align} $$ where x is an unknown vector, A , B and D are constant matrices, b and c are column constant vectors, 𝜏 > 0 is a constant delay and f is a Lurie-type nonlinear function satisfying Lipschitz condition. Absolute stability is analyzed by a general Lyapunov-Krasovskii functional with the results compared with those previously known.
中文翻译:
Lurie型非线性中性系统的绝对稳定性
论文研究中性微分非线性系统的绝对稳定性x˙(t)=Axt+Bxt−τ+Dx˙t−τ+bf(σ(t)),σ(t)=cTx(t),t⩾0 $ $ \begin{align}\dot x(t)=Ax\left ( t \right )+Bx\left ( {t-\tau} \right ) +D\dot x\left ( {t-\tau} \ right ) +bf({\sigma (t)}),\,\, \sigma (t)=c^Tx(t), \,\, t\geqslant 0 \end{align} $$ 其中 x 是一个未知向量,A、B 和 D 是常数矩阵,b 和 c 是列常数向量,𝜏 > 0 是常数延迟,f 是满足 Lipschitz 条件的 Lurie 型非线性函数。绝对稳定性由一般 Lyapunov-Krasovskii 泛函分析,结果与先前已知的结果相比较。
更新日期:2022-01-01
中文翻译:
Lurie型非线性中性系统的绝对稳定性
论文研究中性微分非线性系统的绝对稳定性x˙(t)=Axt+Bxt−τ+Dx˙t−τ+bf(σ(t)),σ(t)=cTx(t),t⩾0 $ $ \begin{align}\dot x(t)=Ax\left ( t \right )+Bx\left ( {t-\tau} \right ) +D\dot x\left ( {t-\tau} \ right ) +bf({\sigma (t)}),\,\, \sigma (t)=c^Tx(t), \,\, t\geqslant 0 \end{align} $$ 其中 x 是一个未知向量,A、B 和 D 是常数矩阵,b 和 c 是列常数向量,𝜏 > 0 是常数延迟,f 是满足 Lipschitz 条件的 Lurie 型非线性函数。绝对稳定性由一般 Lyapunov-Krasovskii 泛函分析,结果与先前已知的结果相比较。