当前位置:
X-MOL 学术
›
Adv. Nonlinear Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimal decay rate for higher–order derivatives of solution to the 3D compressible quantum magnetohydrodynamic model
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2021-0219 Juan Wang 1 , Yinghui Zhang 1
Advances in Nonlinear Analysis ( IF 3.2 ) Pub Date : 2022-01-01 , DOI: 10.1515/anona-2021-0219 Juan Wang 1 , Yinghui Zhang 1
Affiliation
We investigate optimal decay rates for higher–order spatial derivatives of strong solutions to the 3D Cauchy problem of the compressible viscous quantum magnetohydrodynamic model in the H 5 × H 4 × H 4 framework, and the main novelty of this work is three–fold: First, we show that fourth order spatial derivative of the solution converges to zero at the L2-rate (1+t)-114 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{11} \over 4}}} , which is same as one of the heat equation, and particularly faster than the L2-rate (1+t)-54 {L^2} - {\rm{rate}}\,{(1 + t)^{- {5 \over 4}}} in Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and the L2-rate (1+t)-94 {L^2} - {\rm{rate}}\,{(1 + t)^{- {9 \over 4}}} , in Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Second, we prove that fifth–order spatial derivative of density ρ converges to zero at the L2-rate (1+t)-134 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{13} \over 4}}} , which is same as that of the heat equation, and particularly faster than ones of Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Third, we show that the high-frequency part of the fourth order spatial derivatives of the velocity u and magnetic B converge to zero at the L2-rate (1+t)-134 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{13} \over 4}}} , which are faster than ones of themselves, and totally new as compared to Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019].
中文翻译:
3D 可压缩量子磁流体动力学模型解的高阶导数的最佳衰减率
我们研究了 H 5 × H 4 × H 4 框架中可压缩粘性量子磁流体动力学模型的 3D 柯西问题的强解的高阶空间导数的最佳衰减率,这项工作的主要新颖之处在于三个方面:首先,我们证明解的四阶空间导数在 L2 速率 (1+t)-114 {L^2} - {\rm{rate}}\,{(1 + t)^{ - {{11} \over 4}}} ,与热方程之一相同,并且比 L2-rate (1+t)-54 {L^2} - {\rm{rate}} 特别快\,{(1 + t)^{- {5 \over 4}}} 在 Pu–Xu [Z. 安吉。数学。Phys., 68:1, 2017] 和 L2-rate (1+t)-94 {L^2} - {\rm{rate}}\,{(1 + t)^{- {9 \over 4 }}} , 在 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。第二,我们证明密度 ρ 的五阶空间导数在 L2 速率 (1+t)-134 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{13} \over 4}}} ,与热方程相同,尤其比 Pu-Xu [Z. 安吉。数学。Phys., 68:1, 2017] 和 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。第三,我们证明了速度 u 和磁 B 的四阶空间导数的高频部分在 L2 速率 (1+t)-134 {L^2} - {\rm{rate} }\,{(1 + t)^{- {{13} \over 4}}} ,它们比它们自己更快,并且与 Pu–Xu [Z. 安吉。数学。Phys., 68:1, 2017] 和 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。2017] 和 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。第三,我们证明了速度 u 和磁 B 的四阶空间导数的高频部分在 L2 速率 (1+t)-134 {L^2} - {\rm{rate} }\,{(1 + t)^{- {{13} \over 4}}} ,它们比它们自己更快,并且与 Pu–Xu [Z. 安吉。数学。Phys., 68:1, 2017] 和 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。2017] 和 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。第三,我们证明了速度 u 和磁 B 的四阶空间导数的高频部分在 L2 速率 (1+t)-134 {L^2} - {\rm{rate} }\,{(1 + t)^{- {{13} \over 4}}} ,它们比它们自己更快,并且与 Pu–Xu [Z. 安吉。数学。Phys., 68:1, 2017] 和 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。
更新日期:2022-01-01
中文翻译:
3D 可压缩量子磁流体动力学模型解的高阶导数的最佳衰减率
我们研究了 H 5 × H 4 × H 4 框架中可压缩粘性量子磁流体动力学模型的 3D 柯西问题的强解的高阶空间导数的最佳衰减率,这项工作的主要新颖之处在于三个方面:首先,我们证明解的四阶空间导数在 L2 速率 (1+t)-114 {L^2} - {\rm{rate}}\,{(1 + t)^{ - {{11} \over 4}}} ,与热方程之一相同,并且比 L2-rate (1+t)-54 {L^2} - {\rm{rate}} 特别快\,{(1 + t)^{- {5 \over 4}}} 在 Pu–Xu [Z. 安吉。数学。Phys., 68:1, 2017] 和 L2-rate (1+t)-94 {L^2} - {\rm{rate}}\,{(1 + t)^{- {9 \over 4 }}} , 在 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。第二,我们证明密度 ρ 的五阶空间导数在 L2 速率 (1+t)-134 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{13} \over 4}}} ,与热方程相同,尤其比 Pu-Xu [Z. 安吉。数学。Phys., 68:1, 2017] 和 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。第三,我们证明了速度 u 和磁 B 的四阶空间导数的高频部分在 L2 速率 (1+t)-134 {L^2} - {\rm{rate} }\,{(1 + t)^{- {{13} \over 4}}} ,它们比它们自己更快,并且与 Pu–Xu [Z. 安吉。数学。Phys., 68:1, 2017] 和 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。2017] 和 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。第三,我们证明了速度 u 和磁 B 的四阶空间导数的高频部分在 L2 速率 (1+t)-134 {L^2} - {\rm{rate} }\,{(1 + t)^{- {{13} \over 4}}} ,它们比它们自己更快,并且与 Pu–Xu [Z. 安吉。数学。Phys., 68:1, 2017] 和 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。2017] 和 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。第三,我们证明了速度 u 和磁 B 的四阶空间导数的高频部分在 L2 速率 (1+t)-134 {L^2} - {\rm{rate} }\,{(1 + t)^{- {{13} \over 4}}} ,它们比它们自己更快,并且与 Pu–Xu [Z. 安吉。数学。Phys., 68:1, 2017] 和 Xi-Pu-Guo [Z. 安吉。数学。物理学,70:1,2019]。