当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Redox-Active Metaphosphate-Like Terminals Enable High-Capacity MXene Anodes for Ultrafast Na-Ion Storage
Advanced Materials ( IF 27.4 ) Pub Date : 2022-02-11 , DOI: 10.1002/adma.202108682
Boya Sun 1, 2 , Qiongqiong Lu 3 , Kaixuan Chen 4 , Wenhao Zheng 5 , Zhongquan Liao 6 , Nikolaj Lopatik 7 , Dongqi Li 2 , Martin Hantusch 3 , Shengqiang Zhou 8 , Hai I Wang 5 , Zdeněk Sofer 9 , Eike Brunner 7 , Ehrenfried Zschech 10 , Mischa Bonn 5 , Richard Dronskowski 4 , Daria Mikhailova 3 , Qinglei Liu 1 , Di Zhang 1 , Minghao Yu 2 , Xinliang Feng 2, 11
Affiliation  

2D transition metal carbides and/or nitrides, so-called MXenes, are noted as ideal fast-charging cation-intercalation electrode materials, which nevertheless suffer from limited specific capacities. Herein, it is reported that constructing redox-active phosphorus−oxygen terminals can be an attractive strategy for Nb4C3 MXenes to remarkably boost their specific capacities for ultrafast Na+ storage. As revealed, redox-active terminals with a stoichiometric formula of PO2- display a metaphosphate-like configuration with each P atom sustaining three PO bonds and one PO dangling bond. Compared with conventional O-terminals, metaphosphate-like terminals empower Nb4C3 (denoted PO2-Nb4C3) with considerably enriched carrier density (fourfold), improved conductivity (12.3-fold at 300 K), additional redox-active sites, boosted Nb redox depth, nondeclined Na+-diffusion capability, and buffered internal stress during Na+ intercalation/de-intercalation. Consequently, compared with O-terminated Nb4C3, PO2-Nb4C3 exhibits a doubled Na+-storage capacity (221.0 mAh g-1), well-retained fast-charging capability (4.9 min at 80% capacity retention), significantly promoted cycle life (nondegraded capacity over 2000 cycles), and justified feasibility for assembling energy−power-balanced Na-ion capacitors. This study unveils that the molecular-level design of MXene terminals provides opportunities for developing simultaneously high-capacity and fast-charging electrodes, alleviating the energy−power tradeoff typical for energy-storage devices.

中文翻译:

氧化还原活性类偏磷酸盐端子使高容量 MXene 阳极可用于超快钠离子存储

二维过渡金属碳化物和/或氮化物,即所谓的 MXene,被认为是理想的快速充电阳离子插层电极材料,但其比容量有限。在此,据报道,构建具有氧化还原活性的磷-氧末端可能是 Nb 4 C 3 MXenes 显着提高其超快 Na +存储比容量的一种有吸引力的策略。如所揭示的,具有 PO 2化学计量式的氧化还原活性末端显示出类似偏磷酸盐的构型,其中每个 P 原子维持三个P O 键和一个 PO 悬空键。与传统的O-末端相比,类偏磷酸盐末端赋予Nb 4 C 3(表示为 PO 2 -Nb 4 C 3)具有显着丰富的载流子密度(四倍)、提高的电导率(在 300 K 时为 12.3 倍)、额外的氧化还原活性位点、提高的 Nb 氧化还原深度、不下降的 Na +扩散能力和缓冲Na +嵌入/脱嵌过程中的内应力。因此,与O-封端的Nb 4 C 3相比,PO 2 -Nb 4 C 3表现出两倍的Na + -存储容量(221.0 mAh g -1)、良好的快速充电能力(80% 容量保持时 4.9 分钟)、显着提高循环寿命(超过 2000 次循环的非退化容量)以及组装能量-功率平衡的钠离子电容器的合理可行性。这项研究揭示了 MXene 终端的分子级设计为同时开发高容量和快速充电电极提供了机会,从而缓解了储能设备典型的能量-功率权衡。
更新日期:2022-02-11
down
wechat
bug