当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Copolymerization Kinetics of Dopamine Methacrylamide during PNIPAM Microgel Synthesis for Increased Adhesive Properties
Langmuir ( IF 3.7 ) Pub Date : 2022-02-10 , DOI: 10.1021/acs.langmuir.1c02749
Sandra Forg 1 , Alexandra Karbacher 1 , Zhishuang Ye 2 , Xuhong Guo 2 , Regine von Klitzing 1
Affiliation  

Combining stimuli-responsive properties of gels with adhesive properties of mussels is highly interesting for a large field of applications as, e.g., in life science. Therefore, the present paper focuses on the copolymerization of poly(N-isopropylacrylamide) (PNIPAM) microgels with dopamine methacrylamide (DMA). A detailed understanding of reaction kinetics is crucial to figure out an optimized synthesis strategy for tailoring microgels with adhesive properties. The present study addresses the influence of relevant synthesis parameters as the injection time of DMA during the microgel synthesis and the overall reaction time of the microgel. Reaction kinetics were studied by mass spectrometry of time samples taken during the microgel synthesis. This allowed us to determine the monomer consumption of NIPAM, the cross-linker N,N′-methylenebisacrylamide (BIS), and DMA. A second-order reaction kinetics was found for DMA incorporation. The amount of DMA incorporated in the resulting microgel was successfully determined by a combination of UV–vis and NMR spectroscopy to level off limitations of both methods. The dependence of the hydrodynamic radius on temperature was determined by DLS measurements for the microgels. While an early injection of DMA stops the PNIPAM polymerization due to scavenging, it greatly enhances the reaction speed of DMA. The faster reaction of DMA and the incomplete NIPAM and BIS conversion also compensate for shorter reaction times with respect to the incorporated amount of DMA. On the contrary, a later injection of DMA leads to a full NIPAM monomer and BIS cross-linker consumption. An overall reaction time of 60 min ensures the DMA incorporation. Longer reaction times lead to clumping. First adhesion tests show an increased adhesion of P(NIPAM-co-DMA) microgels compared to pure PNIPAM microgels, when mechanical stress is applied.

中文翻译:

多巴胺甲基丙烯酰胺在 PNIPAM 微凝胶合成过程中的共聚动力学以提高粘合性能

将凝胶的刺激响应特性与贻贝的粘合特性相结合对于诸如生命科学等大应用领域来说是非常有趣的。因此,本文重点研究聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶与多巴胺甲基丙烯酰胺(DMA)。详细了解反应动力学对于制定优化的合成策略以定制具有粘合性能的微凝胶至关重要。本研究解决了相关合成参数的影响,如微凝胶合成过程中 DMA 的注射时间和微凝胶的总反应时间。通过在微凝胶合成期间采集的时间样品的质谱研究反应动力学。这使我们能够确定 NIPAM 的单体消耗量、交联剂NN'-亚甲基双丙烯酰胺 (BIS) 和 DMA。发现了 DMA 掺入的二级反应动力学。通过结合 UV-vis 和 NMR 光谱成功地确定了在所得微凝胶中掺入的 DMA 的量,以消除这两种方法的局限性。通过微凝胶的 DLS 测量确定流体动力学半径对温度的依赖性。虽然早期注入 DMA 由于清除而停止了 PNIPAM 聚合,但它大大提高了 DMA 的反应速度。DMA 的较快反应以及不完全的 NIPAM 和 BIS 转化也弥补了相对于 DMA 掺入量的较短反应时间。相反,稍后注入 DMA 会导致 NIPAM 单体和 BIS 交联剂完全消耗。60 分钟的总反应时间确保了 DMA 的加入。较长的反应时间会导致结块。第一次附着力测试显示 P(NIPAM-co -DMA) 微凝胶与纯 PNIPAM 微凝胶相比,当施加机械应力时。
更新日期:2022-02-10
down
wechat
bug