当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dual-Atom Metal and Nonmetal Site Catalyst on a Single Nickel Atom Supported on a Hybridized BCN Nanosheet for Electrochemical CO2 Reduction to Methane: Combining High Activity and Selectivity
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-02-09 , DOI: 10.1021/acsami.1c22761 Yuqin Zhang 1 , Tianyong Liu 1 , Xiaohang Wang 1 , Qian Dang 1 , Mingjie Zhang 1 , Shiyong Zhang 1 , Xingxing Li 1 , Shaobin Tang 1 , Jun Jiang 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2022-02-09 , DOI: 10.1021/acsami.1c22761 Yuqin Zhang 1 , Tianyong Liu 1 , Xiaohang Wang 1 , Qian Dang 1 , Mingjie Zhang 1 , Shiyong Zhang 1 , Xingxing Li 1 , Shaobin Tang 1 , Jun Jiang 2
Affiliation
Atomically dispersed nitrogen-coordinated transition-metal sites supported on graphene (TM–N4–C) offer promising potential for the electrochemical carbon dioxide reduction reaction (CO2RR). However, a few TM–Nx–C single-atom catalysts (SAC) are capable of reducing CO2 to multielectron products with high activity and selectivity. Herein, using density functional theory calculations, we investigated the electrocatalytic performance of a single TM atom embedded into a defective BCN nanosheet for CO2RR. The N and B atom co-coordinated TM center, namely, TM–B2N2, constructs a symmetry-breaking site, which strengthens the overlapping of atomic orbitals, and enables the linear CO2 to be curved and activated, compared to the weak coupling of CO2 with the symmetric TM–N4 site. Moreover, the TM–B2N2 sites play a role of dual-atom active sites, in which the TM atom serves as the carbon adsorption site and the B atom acts as the oxygen adsorption site, largely stabilizing the key intermediates, especially *COOH. The symmetry-breaking coordination structures shift the d-band center of the TM atom toward the Fermi level and thus facilitate CO2 reduction to hydrocarbons and oxygenates. As a result, different from the TM–N4–C structure that leads to CO as the major product, the Ni atom supported on BCN can selectively catalyze CO2 conversion into CH4, with an ultralow limiting potential of −0.07 V, while suppressing the hydrogen evolution reaction. Our finding suggests that introduction of a nonmetal active site adjacent to the metal site provides a new avenue for achieving efficient multi-intermediate electrocatalytic reactions.
中文翻译:
杂化 BCN 纳米片上单镍原子上的双原子金属和非金属位点催化剂用于电化学 CO2 还原为甲烷:结合高活性和选择性
支持在石墨烯上的原子分散的氮配位过渡金属位点 (TM-N 4 -C) 为电化学二氧化碳还原反应 (CO 2 RR) 提供了有希望的潜力。然而,一些 TM-N x -C 单原子催化剂 (SAC) 能够将 CO 2还原为具有高活性和选择性的多电子产物。在此,我们使用密度泛函理论计算,研究了嵌入有缺陷的 BCN 纳米片中的单个 TM 原子对 CO 2 RR 的电催化性能。N和B原子配位的TM中心,即TM-B 2 N 2,与CO 2与对称TM-N 4位点的弱耦合相比,构建了一个对称破缺位点,加强了原子轨道的重叠,并使线性CO 2弯曲和活化。此外,TM-B 2 N 2位点起到双原子活性位点的作用,其中 TM 原子作为碳吸附位点,B 原子作为氧吸附位点,在很大程度上稳定了关键中间体,尤其是*二氧化碳。对称破缺的配位结构将 TM 原子的 d 带中心移向费米能级,从而促进 CO 2还原为碳氢化合物和含氧化合物。因此,不同于 TM-N 4以CO为主要产物的-C结构,BCN上负载的Ni原子可以选择性地催化CO 2转化为CH 4,具有-0.07 V的超低极限电位,同时抑制了析氢反应。我们的发现表明,在金属位点附近引入非金属活性位点为实现高效的多中间体电催化反应提供了新途径。
更新日期:2022-02-09
中文翻译:
杂化 BCN 纳米片上单镍原子上的双原子金属和非金属位点催化剂用于电化学 CO2 还原为甲烷:结合高活性和选择性
支持在石墨烯上的原子分散的氮配位过渡金属位点 (TM-N 4 -C) 为电化学二氧化碳还原反应 (CO 2 RR) 提供了有希望的潜力。然而,一些 TM-N x -C 单原子催化剂 (SAC) 能够将 CO 2还原为具有高活性和选择性的多电子产物。在此,我们使用密度泛函理论计算,研究了嵌入有缺陷的 BCN 纳米片中的单个 TM 原子对 CO 2 RR 的电催化性能。N和B原子配位的TM中心,即TM-B 2 N 2,与CO 2与对称TM-N 4位点的弱耦合相比,构建了一个对称破缺位点,加强了原子轨道的重叠,并使线性CO 2弯曲和活化。此外,TM-B 2 N 2位点起到双原子活性位点的作用,其中 TM 原子作为碳吸附位点,B 原子作为氧吸附位点,在很大程度上稳定了关键中间体,尤其是*二氧化碳。对称破缺的配位结构将 TM 原子的 d 带中心移向费米能级,从而促进 CO 2还原为碳氢化合物和含氧化合物。因此,不同于 TM-N 4以CO为主要产物的-C结构,BCN上负载的Ni原子可以选择性地催化CO 2转化为CH 4,具有-0.07 V的超低极限电位,同时抑制了析氢反应。我们的发现表明,在金属位点附近引入非金属活性位点为实现高效的多中间体电催化反应提供了新途径。