当前位置:
X-MOL 学术
›
Laser Photonics Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Light-Induced In-Plane Rotation of Microobjects on Microfibers
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2022-02-07 , DOI: 10.1002/lpor.202100561 Wei Lyu 1, 2, 3 , Weiwei Tang 2, 3 , Wei Yan 2, 3 , Min Qiu 2, 3
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2022-02-07 , DOI: 10.1002/lpor.202100561 Wei Lyu 1, 2, 3 , Weiwei Tang 2, 3 , Wei Yan 2, 3 , Min Qiu 2, 3
Affiliation
The transfer of momentum carried by photons into a microobject has been widely used to actuate the microobject. However, this scheme is defective in nonliquid environments due to the scale gap between friction force (N) and optical force (pN). To overcome this problem, the researchers have recently proposed to take advantage of elastic waves induced by optical absorption. Grounded on this insight, here, the in-plane rotation of a gold microplate in its surface contacting with a microfiber is demonstrated and characterized. The in-plane rotation is actuated by laser pulses guided into the microfiber, and its speed increases with laser power. Furthermore, the underlying physical mechanisms supported with numerical simulations are examined, highlighting the joint role of the spatial gradient of optical absorption and the asymmetry in two wings of the plate. The combined experimental and theoretical results offer new insights into the study of the light-induced actuation of the microobjects in nonliquid environments, an emerging field far from being mature in both comprehensive understanding and practical applications.
中文翻译:
微纤维上微物体的光诱导面内旋转
光子携带的动量转移到微物体中已被广泛用于驱动微物体。然而,由于摩擦力(N) 和光学力 (pN)。为了克服这个问题,研究人员最近提出利用由光吸收引起的弹性波。基于这一见解,这里展示并表征了金微板在其与微纤维接触的表面中的平面内旋转。平面内旋转由引导到微纤维中的激光脉冲驱动,其速度随着激光功率的增加而增加。此外,研究了数值模拟支持的潜在物理机制,突出了光吸收的空间梯度和板的两个翼的不对称性的共同作用。实验和理论结果的结合为研究非液体环境中微物体的光致驱动提供了新的见解,
更新日期:2022-02-07
中文翻译:
微纤维上微物体的光诱导面内旋转
光子携带的动量转移到微物体中已被广泛用于驱动微物体。然而,由于摩擦力(N) 和光学力 (pN)。为了克服这个问题,研究人员最近提出利用由光吸收引起的弹性波。基于这一见解,这里展示并表征了金微板在其与微纤维接触的表面中的平面内旋转。平面内旋转由引导到微纤维中的激光脉冲驱动,其速度随着激光功率的增加而增加。此外,研究了数值模拟支持的潜在物理机制,突出了光吸收的空间梯度和板的两个翼的不对称性的共同作用。实验和理论结果的结合为研究非液体环境中微物体的光致驱动提供了新的见解,