Applied Surface Science ( IF 6.3 ) Pub Date : 2022-02-07 , DOI: 10.1016/j.apsusc.2022.152670 Cheng Peng 1 , Xuefeng Xia 1 , Xiaofeng Wang 1 , Jiayi Peng 1 , Zhiping Fan 1 , Fan Li 1
Despite great advancements in perovskite solar cells (PSCs), the unsatisfactory intergrain interconnecting in polycrystalline perovskite films remains a challenge to be addressed. Herein, three bilateral dicarboxyic acids, i.e. suberic acid (SA), p-phthalic acid (PTA) and biphenyl dicarboxylic acid (BPDA), are employed as additives to uncover the role of π-conjugated-length-regulated intergrain interconnecting in PSCs. Benefiting from strong interactions between two-sided carboxyl groups and perovskites, incorporation of these additives can control crystal growth, passivate defects/traps and tighten the interconnecting of perovskite grains. Moreover, thanks to the large π-electron delocalization and π-π interactions, introduction of π-conjugated additives (i.e. PTA and BPDA) can evidently intensify the preferred orientation of perovskite crystals and improve the carrier transport between perovskite grains. Especially, by extending π-conjugated structure to biphenyl groups (i.e. BPDA), high-quality perovskite films exhibiting large and ordered grains with vertically columnar alignment, along with strong electrical intergrain interconnecting, are obtained. Moreover, the intrinsic hydrophobicity nature of π-conjugated structures is helpful for improving the moisture stability. Eventually, the champion efficiency of 20.87% is acquired with negligible hysteresis and excellent moisture stability for PSCs with BPDA. Our work demonstrates that the π-conjugated length of additives can play a vital role in regulating the intergrain interconnecting.
中文翻译:
π共轭长度调节钙钛矿晶间互连在钙钛矿太阳能电池光伏性能中的作用
尽管钙钛矿太阳能电池(PSC)取得了巨大进步,但多晶钙钛矿薄膜中不令人满意的晶间互连仍然是一个有待解决的挑战。在此,三种双边二羧酸,即辛二酸(SA)、对苯二甲酸(PTA)和联苯二羧酸(BPDA),被用作添加剂,以揭示 π-共轭长度调节晶间互连在 PSC 中的作用。受益于两侧羧基和钙钛矿之间的强相互作用,这些添加剂的掺入可以控制晶体生长,钝化缺陷/陷阱并加强钙钛矿晶粒的互连。此外,由于大的 π-电子离域和 π-π 相互作用,引入 π-共轭添加剂(即 PTA和BPDA)可以明显强化钙钛矿晶体的择优取向,改善钙钛矿晶粒间的载流子传输。特别是,通过将π-共轭结构扩展到联苯基(即BPDA),获得了具有垂直柱状排列的大而有序晶粒以及强电晶间互连的高质量钙钛矿薄膜。此外,π共轭结构的内在疏水性有助于提高水分稳定性。最终,具有 BPDA 的 PSC 获得了 20.87% 的冠军效率,滞后可忽略不计,并且具有出色的水分稳定性。我们的工作表明,添加剂的 π 共轭长度可以在调节晶间互连方面发挥重要作用。特别是,通过将π-共轭结构扩展到联苯基(即BPDA),获得了具有垂直柱状排列的大而有序晶粒以及强电晶间互连的高质量钙钛矿薄膜。此外,π共轭结构的内在疏水性有助于提高水分稳定性。最终,具有 BPDA 的 PSC 获得了 20.87% 的冠军效率,滞后可忽略不计,并且具有出色的水分稳定性。我们的工作表明,添加剂的 π 共轭长度可以在调节晶间互连方面发挥重要作用。特别是,通过将π-共轭结构扩展到联苯基(即BPDA),获得了具有垂直柱状排列的大而有序晶粒以及强电晶间互连的高质量钙钛矿薄膜。此外,π共轭结构的内在疏水性有助于提高水分稳定性。最终,具有 BPDA 的 PSC 获得了 20.87% 的冠军效率,滞后可忽略不计,并且具有出色的水分稳定性。我们的工作表明,添加剂的 π 共轭长度可以在调节晶间互连方面发挥重要作用。随着强大的电晶间互连,获得。此外,π共轭结构的内在疏水性有助于提高水分稳定性。最终,具有 BPDA 的 PSC 获得了 20.87% 的冠军效率,滞后可忽略不计,并且具有出色的水分稳定性。我们的工作表明,添加剂的 π 共轭长度可以在调节晶间互连方面发挥重要作用。随着强大的电晶间互连,获得。此外,π共轭结构的内在疏水性有助于提高水分稳定性。最终,具有 BPDA 的 PSC 获得了 20.87% 的冠军效率,滞后可忽略不计,并且具有出色的水分稳定性。我们的工作表明,添加剂的 π 共轭长度可以在调节晶间互连方面发挥重要作用。